These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 17235615)

  • 1. New methodology for multi-dimensional spinal joint testing with a parallel robot.
    Walker MR; Dickey JP
    Med Biol Eng Comput; 2007 Mar; 45(3):297-304. PubMed ID: 17235615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and validation of a novel Cartesian biomechanical testing system with coordinated 6DOF real-time load control: application to the lumbar spine (L1-S, L4-L5).
    Kelly BP; Bennett CR
    J Biomech; 2013 Jul; 46(11):1948-54. PubMed ID: 23764173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of six degree of freedom loading sequence on the in-vitro compressive properties of human lumbar spine segments.
    Amin DB; Lawless IM; Sommerfeld D; Stanley RM; Ding B; Costi JJ
    J Biomech; 2016 Oct; 49(14):3407-3414. PubMed ID: 27663622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can extra-articular strains be used to measure facet contact forces in the lumbar spine? An in-vitro biomechanical study.
    Zhu QA; Park YB; Sjovold SG; Niosi CA; Wilson DC; Cripton PA; Oxland TR
    Proc Inst Mech Eng H; 2008 Feb; 222(2):171-84. PubMed ID: 18441753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lumbar facet joint and intervertebral disc loading during simulated pelvic obliquity.
    Popovich JM; Welcher JB; Hedman TP; Tawackoli W; Anand N; Chen TC; Kulig K
    Spine J; 2013 Nov; 13(11):1581-9. PubMed ID: 23706384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic application of a dynamic resultant force vector using real-time load-control: simulation of an ideal follower load on Cadaveric L4-L5 segments.
    Bennett CR; Kelly BP
    J Biomech; 2013 Aug; 46(12):2087-92. PubMed ID: 23809771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A continuous pure moment loading apparatus for biomechanical testing of multi-segment spine specimens.
    Lysack JT; Dickey JP; Dumas GA; Yen D
    J Biomech; 2000 Jun; 33(6):765-70. PubMed ID: 10807999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical response of lumbar facet joints under follower preload: a finite element study.
    Du CF; Yang N; Guo JC; Huang YP; Zhang C
    BMC Musculoskelet Disord; 2016 Mar; 17():126. PubMed ID: 26980002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The application of physiological loading using a dynamic, multi-axis spine simulator.
    Holsgrove TP; Miles AW; Gheduzzi S
    Med Eng Phys; 2017 Mar; 41():74-80. PubMed ID: 28043781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Research of joint-robotics-based design of biomechanics testing device on human spine].
    Deng G; Tian L; Mao Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1246-9. PubMed ID: 20095479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive velocity-based six degree of freedom load control for real-time unconstrained biomechanical testing.
    Lawless IM; Ding B; Cazzolato BS; Costi JJ
    J Biomech; 2014 Sep; 47(12):3241-7. PubMed ID: 25016485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel robotic system for joint biomechanical tests: application to the human knee joint.
    Fujie H; Sekito T; Orita A
    J Biomech Eng; 2004 Feb; 126(1):54-61. PubMed ID: 15171129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Spinal Manipulative Therapy Force Magnitude and Application Site on Spinal Tissue Loading: A Biomechanical Robotic Serial Dissection Study in Porcine Motion Segments.
    Funabashi M; Nougarou F; Descarreaux M; Prasad N; Kawchuk G
    J Manipulative Physiol Ther; 2017; 40(6):387-396. PubMed ID: 28822473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of varying compressive loading methods on physiologic motion patterns in the cervical spine.
    Bell KM; Yan Y; Debski RE; Sowa GA; Kang JD; Tashman S
    J Biomech; 2016 Jan; 49(2):167-72. PubMed ID: 26708967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the load-sharing along the ligamentous lumbosacral spine in flexed and extended postures: Finite element study.
    Naserkhaki S; Jaremko JL; Adeeb S; El-Rich M
    J Biomech; 2016 Apr; 49(6):974-982. PubMed ID: 26493346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load.
    Zirbel SA; Stolworthy DK; Howell LL; Bowden AE
    Spine J; 2013 Sep; 13(9):1134-47. PubMed ID: 23507531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel testing platform for assessing knee joint mechanics: a parallel robotic system combined with an instrumented spatial linkage.
    Atarod M; Rosvold JM; Frank CB; Shrive NG
    Ann Biomed Eng; 2014 May; 42(5):1121-32. PubMed ID: 24519725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimizing errors during in vitro testing of multisegmental spine specimens: considerations for component selection and kinematic measurement.
    Gédet P; Thistlethwaite PA; Ferguson SJ
    J Biomech; 2007; 40(8):1881-5. PubMed ID: 17067608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a robot-assisted testing system for multisegmental spine specimens.
    Schulze M; Hartensuer R; Gehweiler D; Hölscher U; Raschke MJ; Vordemvenne T
    J Biomech; 2012 May; 45(8):1457-62. PubMed ID: 22387121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro spine testing using a robot-based testing system: comparison of displacement control and "hybrid control".
    Bell KM; Hartman RA; Gilbertson LG; Kang JD
    J Biomech; 2013 Jun; 46(10):1663-9. PubMed ID: 23702044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.