BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 17236103)

  • 1. Investigating cytoskeletal function in chloroplast protrusion formation in the arctic-alpine plant Oxyria digyna.
    Holzinger A; Wasteneys GO; Lütz C
    Plant Biol (Stuttg); 2007 May; 9(3):400-10. PubMed ID: 17236103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in chloroplast ultrastructure in some high-alpine plants: adaptation to metabolic demands and climate?
    Lütz C; Engel L
    Protoplasma; 2007; 231(3-4):183-92. PubMed ID: 17603748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actin-organelle interaction: association with chloroplast in arabidopsis leaf mesophyll cells.
    Kandasamy MK; Meagher RB
    Cell Motil Cytoskeleton; 1999 Oct; 44(2):110-8. PubMed ID: 10506746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of temperature and light on the formation of chloroplast protrusions in leaf mesophyll cells of high alpine plants.
    Buchner O; Holzinger A; Lütz C
    Plant Cell Environ; 2007 Nov; 30(11):1347-56. PubMed ID: 17897406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-sensitive formation of chloroplast protrusions and stromules in mesophyll cells of Arabidopsis thaliana.
    Holzinger A; Buchner O; Lütz C; Hanson MR
    Protoplasma; 2007; 230(1-2):23-30. PubMed ID: 17351732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoskeletal asymmetry in Zea mays subsidiary cell mother cells: a monopolar prophase microtubule half-spindle anchors the nucleus to its polar position.
    Panteris E; Apostolakos P; Galatis B
    Cell Motil Cytoskeleton; 2006 Nov; 63(11):696-709. PubMed ID: 16986138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplasts alter their morphology and accumulate at the pathogen interface during infection by Phytophthora infestans.
    Savage Z; Duggan C; Toufexi A; Pandey P; Liang Y; Segretin ME; Yuen LH; Gaboriau DCA; Leary AY; Tumtas Y; Khandare V; Ward AD; Botchway SW; Bateman BC; Pan I; Schattat M; Sparkes I; Bozkurt TO
    Plant J; 2021 Sep; 107(6):1771-1787. PubMed ID: 34250673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubules, but not actin microfilaments, regulate vacuole motility and morphology in hyphae of Pisolithus tinctorius.
    Hyde GJ; Davies D; Perasso L; Cole L; Ashford AE
    Cell Motil Cytoskeleton; 1999; 42(2):114-24. PubMed ID: 10215421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of Pleistocene climate change on an ancient arctic-alpine plant: multiple lineages of disparate history in Oxyria digyna.
    Allen GA; Marr KL; McCormick LJ; Hebda RJ
    Ecol Evol; 2012 Mar; 2(3):649-65. PubMed ID: 22822441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubules and microfilaments coordinate to direct a fountain streaming pattern in elongating conifer pollen tube tips.
    Justus CD; Anderhag P; Goins JL; Lazzaro MD
    Planta; 2004 May; 219(1):103-9. PubMed ID: 14740215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypersensitivity to cytoskeletal antagonists demonstrates microtubule-microfilament cross-talk in the control of root elongation in Arabidopsis thaliana.
    Collings DA; Lill AW; Himmelspach R; Wasteneys GO
    New Phytol; 2006; 170(2):275-90. PubMed ID: 16608453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Xanthomonas effector XopL uncovers the role of microtubules in stromule extension and dynamics in Nicotiana benthamiana.
    Erickson JL; Adlung N; Lampe C; Bonas U; Schattat MH
    Plant J; 2018 Mar; 93(5):856-870. PubMed ID: 29285819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the microtubule cytoskeleton in gravisensing Chara rhizoids.
    Braun M; Sievers A
    Eur J Cell Biol; 1994 Apr; 63(2):289-98. PubMed ID: 8082653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtubules, but not actin filaments, drive daughter cell budding and cell division in Toxoplasma gondii.
    Shaw MK; Compton HL; Roos DS; Tilney LG
    J Cell Sci; 2000 Apr; 113 ( Pt 7)():1241-54. PubMed ID: 10704375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloroplast and oxygen evolution changes in Symbiodinium sp. as a response to latrunculin and butanedione monoxime treatments under various light conditions.
    Villanueva MA; Barnay-Verdier S; Priouzeau F; Furla P
    Photosynth Res; 2015 Jun; 124(3):305-13. PubMed ID: 25904178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton.
    Gossot O; Geitmann A
    Planta; 2007 Jul; 226(2):405-16. PubMed ID: 17318608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of cytoskeleton in cell shaping of developing mesophyll of wheat (Triticum aestivum L.).
    Wernicke W; Jung G
    Eur J Cell Biol; 1992 Feb; 57(1):88-94. PubMed ID: 1639093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actomyosin-based motility of endoplasmic reticulum and chloroplasts in Vallisneria mesophyll cells.
    Liebe S; Menzel D
    Biol Cell; 1995; 85(2-3):207-22. PubMed ID: 8785522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue-Specific Dynamics in the Endophytic Bacterial Communities in Arctic Pioneer Plant
    Given C; Häikiö E; Kumar M; Nissinen R
    Front Plant Sci; 2020; 11():561. PubMed ID: 32528486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reorganization of microfilaments and microtubules by thermal stress in two-cell bovine embryos.
    Rivera RM; Kelley KL; Erdos GW; Hansen PJ
    Biol Reprod; 2004 Jun; 70(6):1852-62. PubMed ID: 14960486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.