BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 17236209)

  • 1. Disruption of the HIV-1 protease dimer with interface peptides: structural studies using NMR spectroscopy combined with [2-(13)C]-Trp selective labeling.
    Frutos S; Rodriguez-Mias RA; Madurga S; Collinet B; Reboud-Ravaux M; Ludevid D; Giralt E
    Biopolymers; 2007; 88(2):164-73. PubMed ID: 17236209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An alternative strategy for inhibiting multidrug-resistant mutants of the dimeric HIV-1 protease by targeting the subunit interface.
    Bannwarth L; Reboud-Ravaux M
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):551-4. PubMed ID: 17511649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimer disruption and monomer sequestration by alkyl tripeptides are successful strategies for inhibiting wild-type and multidrug-resistant mutated HIV-1 proteases.
    Bannwarth L; Rose T; Dufau L; Vanderesse R; Dumond J; Jamart-Grégoire B; Pannecouque C; De Clercq E; Reboud-Ravaux M
    Biochemistry; 2009 Jan; 48(2):379-87. PubMed ID: 19105629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of low molecular weight HIV-1 protease dimerization inhibitors.
    Hwang YS; Chmielewski J
    J Med Chem; 2005 Mar; 48(6):2239-42. PubMed ID: 15771466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, synthesis, and evaluation of conformationally constrained tongs, new inhibitors of HIV-1 protease dimerization.
    Bouras A; Boggetto N; Benatalah Z; de Rosny E; Sicsic S; Reboud-Ravaux M
    J Med Chem; 1999 Mar; 42(6):957-62. PubMed ID: 10090778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimerization inhibitors of HIV-1 protease.
    Boggetto N; Reboud-Ravaux M
    Biol Chem; 2002 Sep; 383(9):1321-4. PubMed ID: 12437124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The inhibition of HIV-1 protease by interface peptides.
    Schramm HJ; Billich A; Jaeger E; Rücknagel KP; Arnold G; Schramm W
    Biochem Biophys Res Commun; 1993 Jul; 194(2):595-600. PubMed ID: 8343146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational proteomics analysis of binding mechanisms and molecular signatures of the HIV-1 protease drugs.
    Verkhivker G
    Artif Intell Med; 2009; 45(2-3):197-206. PubMed ID: 18926674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel strategies for targeting the dimerization interface of HIV protease with cross-linked interfacial peptides.
    Bowman MJ; Chmielewski J
    Biopolymers; 2002; 66(2):126-33. PubMed ID: 12325162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoprocessing of HIV-1 protease is tightly coupled to protein folding.
    Louis JM; Clore GM; Gronenborn AM
    Nat Struct Biol; 1999 Sep; 6(9):868-75. PubMed ID: 10467100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The folding and dimerization of HIV-1 protease: evidence for a stable monomer from simulations.
    Levy Y; Caflisch A; Onuchic JN; Wolynes PG
    J Mol Biol; 2004 Jun; 340(1):67-79. PubMed ID: 15184023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of HIV-1 protease monomer: Assembly of N-terminus and C-terminus into beta-sheet in water solution.
    Yan MC; Sha Y; Wang J; Xiong XQ; Ren JH; Cheng MS
    Proteins; 2008 Feb; 70(3):731-8. PubMed ID: 17729281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A folding inhibitor of the HIV-1 protease.
    Broglia RA; Provasi D; Vasile F; Ottolina G; Longhi R; Tiana G
    Proteins; 2006 Mar; 62(4):928-33. PubMed ID: 16385559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative studies on inhibitors of HIV protease: a target for drug design.
    Jayaraman S; Shah K
    In Silico Biol; 2008; 8(5-6):427-47. PubMed ID: 19374129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast two-hybrid assay for examining human immunodeficiency virus protease heterodimer formation with dominant-negative inhibitors and multidrug-resistant variants.
    Todd S; Laboissière MC; Craik CS
    Anal Biochem; 2000 Jan; 277(2):247-53. PubMed ID: 10625514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model.
    Wang W; Kollman PA
    J Mol Biol; 2000 Nov; 303(4):567-82. PubMed ID: 11054292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triterpenes as potential dimerization inhibitors of HIV-1 protease.
    Quéré L; Wenger T; Schramm HJ
    Biochem Biophys Res Commun; 1996 Oct; 227(2):484-8. PubMed ID: 8967903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid synthesis and in situ screening of potent HIV-1 protease dimerization inhibitors.
    Lee SG; Chmielewski J
    Chem Biol; 2006 Apr; 13(4):421-6. PubMed ID: 16632254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New constrained "molecular tongs" designed to dissociate HIV-1 protease dimer.
    Merabet N; Dumond J; Collinet B; Van Baelinghem L; Boggetto N; Ongeri S; Ressad F; Reboud-Ravaux M; Sicsic S
    J Med Chem; 2004 Dec; 47(25):6392-400. PubMed ID: 15566308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophilic peptides derived from the transframe region of Gag-Pol inhibit the HIV-1 protease.
    Louis JM; Dyda F; Nashed NT; Kimmel AR; Davies DR
    Biochemistry; 1998 Feb; 37(8):2105-10. PubMed ID: 9485357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.