These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 17236211)

  • 1. Histological and mechanical evaluation of self-setting calcium phosphate cements in a sheep vertebral bone void model.
    Kobayashi N; Ong K; Villarraga M; Schwardt J; Wenz R; Togawa D; Fujishiro T; Turner AS; Seim HB; Bauer TW
    J Biomed Mater Res A; 2007 Jun; 81(4):838-46. PubMed ID: 17236211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term evaluation of a calcium phosphate bone cement with carboxymethyl cellulose in a vertebral defect model.
    Kobayashi H; Fujishiro T; Belkoff SM; Kobayashi N; Turner AS; Seim HB; Zitelli J; Hawkins M; Bauer TW
    J Biomed Mater Res A; 2009 Mar; 88(4):880-8. PubMed ID: 18381636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased extrusion of calcium phosphate cement versus high viscosity PMMA cement into spongious bone marrow-an ex vivo and in vivo study in sheep vertebrae.
    Xin L; Bungartz M; Maenz S; Horbert V; Hennig M; Illerhaus B; Günster J; Bossert J; Bischoff S; Borowski J; Schubert H; Jandt KD; Kunisch E; Kinne RW; Brinkmann O
    Spine J; 2016 Dec; 16(12):1468-1477. PubMed ID: 27496285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-dose BMP-2 is sufficient to enhance the bone formation induced by an injectable, PLGA fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia.
    Gunnella F; Kunisch E; Bungartz M; Maenz S; Horbert V; Xin L; Mika J; Borowski J; Bischoff S; Schubert H; Hortschansky P; Sachse A; Illerhaus B; Günster J; Bossert J; Jandt KD; Plöger F; Kinne RW; Brinkmann O
    Spine J; 2017 Nov; 17(11):1699-1711. PubMed ID: 28619686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement of calcium phosphate cement using alkaline-treated silk fibroin.
    Hu M; He Z; Han F; Shi C; Zhou P; Ling F; Zhu X; Yang H; Li B
    Int J Nanomedicine; 2018; 13():7183-7193. PubMed ID: 30519015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rat osteoporotic spine model for the evaluation of bioresorbable bone cements.
    Wang ML; Massie J; Perry A; Garfin SR; Kim CW
    Spine J; 2007; 7(4):466-74. PubMed ID: 17630145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of calcium phosphate and calcium sulfate as injectable bone cements in sheep vertebrae.
    Zhu X; Chen X; Chen C; Wang G; Gu Y; Geng D; Mao H; Zhang Z; Yang H
    J Spinal Disord Tech; 2012 Aug; 25(6):333-7. PubMed ID: 21666507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertebroplasty comparing injectable calcium phosphate cement compared with polymethylmethacrylate in a unique canine vertebral body large defect model.
    Turner TM; Urban RM; Singh K; Hall DJ; Renner SM; Lim TH; Tomlinson MJ; An HS
    Spine J; 2008; 8(3):482-7. PubMed ID: 18455113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model.
    Hu MH; Lee PY; Chen WC; Hu JJ
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():82-8. PubMed ID: 25491804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GDF5 significantly augments the bone formation induced by an injectable, PLGA fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia.
    Bungartz M; Kunisch E; Maenz S; Horbert V; Xin L; Gunnella F; Mika J; Borowski J; Bischoff S; Schubert H; Sachse A; Illerhaus B; Günster J; Bossert J; Jandt KD; Plöger F; Kinne RW; Brinkmann O
    Spine J; 2017 Nov; 17(11):1685-1698. PubMed ID: 28642196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties.
    Zhang J; Liu W; Schnitzler V; Tancret F; Bouler JM
    Acta Biomater; 2014 Mar; 10(3):1035-49. PubMed ID: 24231047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced bone formation in sheep vertebral bodies after minimally invasive treatment with a novel, PLGA fiber-reinforced brushite cement.
    Maenz S; Brinkmann O; Kunisch E; Horbert V; Gunnella F; Bischoff S; Schubert H; Sachse A; Xin L; Günster J; Illerhaus B; Jandt KD; Bossert J; Kinne RW; Bungartz M
    Spine J; 2017 May; 17(5):709-719. PubMed ID: 27871820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration.
    Meng D; Dong L; Wen Y; Xie Q
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():266-72. PubMed ID: 25492197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements.
    Sariibrahimoglu K; Leeuwenburgh SC; Wolke JG; Yubao L; Jansen JA
    J Biomed Mater Res A; 2012 Mar; 100(3):712-9. PubMed ID: 22213632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of adding resorbable phosphate glass fibres and PLA to calcium phosphate bone cements.
    Hasan MS; Carpenter N; Wei TL; McNally D; Ahmed I; Boszczyk BM
    J Appl Biomater Funct Mater; 2014 Dec; 12(3):203-9. PubMed ID: 24744228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressive fatigue properties of an acidic calcium phosphate cement-effect of phase composition.
    Ajaxon I; Öhman Mägi C; Persson C
    J Mater Sci Mater Med; 2017 Mar; 28(3):41. PubMed ID: 28144853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simvastatin-loaded macroporous calcium phosphate cement: preparation, in vitro characterization, and evaluation of in vivo performance.
    Yin H; Li YG; Si M; Li JM
    J Biomed Mater Res A; 2012 Nov; 100(11):2991-3000. PubMed ID: 22700467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration.
    Wu F; Wei J; Guo H; Chen F; Hong H; Liu C
    Acta Biomater; 2008 Nov; 4(6):1873-84. PubMed ID: 18662897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of an effervescent additive as porogenic agent for bone cement macroporosity.
    Hesaraki S; Sharifi D
    Biomed Mater Eng; 2007; 17(1):29-38. PubMed ID: 17264385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the pore generator on the evolution of the mechanical properties and the porosity and interconnectivity of a calcium phosphate cement.
    Lopez-Heredia MA; Sariibrahimoglu K; Yang W; Bohner M; Yamashita D; Kunstar A; van Apeldoorn AA; Bronkhorst EM; Félix Lanao RP; Leeuwenburgh SC; Itatani K; Yang F; Salmon P; Wolke JG; Jansen JA
    Acta Biomater; 2012 Jan; 8(1):404-14. PubMed ID: 21884833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.