These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 17236753)

  • 41. Impact of moisture on volatility of heavy metals in municipal solid waste incinerated in a laboratory scale simulated incinerator.
    Youcai Z; Stucki S; Ludwig Ch; Wochele J
    Waste Manag; 2004; 24(6):581-7. PubMed ID: 15219916
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cogeneration from thermal treatment of selected municipal solid wastes. A stoichiometric model building for the case study on Palermo.
    Lo Mastro F; Mistretta M
    Waste Manag; 2004; 24(3):309-17. PubMed ID: 15016419
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Experimental Studies on the Combustion Characteristics of Multisource Organic Solid Waste for Collaborative Disposal Using Municipal Solid Waste Incinerators.
    Zhuo X; Li M; Cheng Q; Luo Z
    ACS Omega; 2024 Jan; 9(2):2911-2919. PubMed ID: 38250367
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Health risk assessment of air emissions from a municipal solid waste incineration plant--a case study.
    Cangialosi F; Intini G; Liberti L; Notarnicola M; Stellacci P
    Waste Manag; 2008; 28(5):885-95. PubMed ID: 17611096
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Numerical model for a watering plan to wash out organic matter from the municipal solid waste incinerator bottom ash layer in closed system disposal facilities.
    Ishii K; Furuichi T; Tanikawa N
    Waste Manag; 2009 Feb; 29(2):513-21. PubMed ID: 18691865
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Industrial hazardous waste treatment featuring a rotary kiln and grate furnace incinerator: a case study in China.
    Ma P; Ma Z; Yan J; Chi Y; Ni M; Cen K
    Waste Manag Res; 2011 Oct; 29(10):1108-12. PubMed ID: 21746756
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Size distribution and number concentration of particles at the stack of a municipal waste incinerator.
    Buonanno G; Ficco G; Stabile L
    Waste Manag; 2009 Feb; 29(2):749-55. PubMed ID: 18778929
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hazardous waste incinerators under waste uncertainty: balancing and throughput maximization via heat recuperation.
    Tsiliyannis CA
    Waste Manag; 2013 Sep; 33(9):1800-24. PubMed ID: 23756352
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of air pollution control residues produced in a municipal solid waste incinerator in Portugal.
    Quina MJ; Santos RC; Bordado JC; Quinta-Ferreira RM
    J Hazard Mater; 2008 Apr; 152(2):853-69. PubMed ID: 17728059
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gaseous emissions from waste combustion.
    Werther J
    J Hazard Mater; 2007 Jun; 144(3):604-13. PubMed ID: 17339077
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Public health benefits of compliance with current E.U. emissions standards for municipal waste incinerators: a health risk assessment with the CalTox multimedia exposure model.
    Glorennec P; Zmirou D; Bard D
    Environ Int; 2005 Jul; 31(5):693-701. PubMed ID: 15910966
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Minimum feeding rate of activated carbon to control dioxin emissions from a large-scale municipal solid waste incinerator.
    Chang YM; Hung CY; Chen JH; Chang CT; Chen CH
    J Hazard Mater; 2009 Jan; 161(2-3):1436-43. PubMed ID: 18599199
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimization of municipal solid waste incineration for low-NO
    Li Z; Fan TW; Lun MS; Li Q
    Sci Rep; 2024 Aug; 14(1):19309. PubMed ID: 39164327
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Model predictive control as a tool for improving the process operation of MSW combustion plants.
    Leskens M; van Kessel LB; Bosgra OH
    Waste Manag; 2005; 25(8):788-98. PubMed ID: 15896951
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sorting efficiency and combustion properties of municipal solid waste during bio-drying.
    Zhang DQ; He PJ; Shao LM
    Waste Manag; 2009 Nov; 29(11):2816-23. PubMed ID: 19608397
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Combustion and inorganic bromine emission of waste printed circuit boards in a high temperature furnace.
    Ni M; Xiao H; Chi Y; Yan J; Buekens A; Jin Y; Lu S
    Waste Manag; 2012 Mar; 32(3):568-74. PubMed ID: 22137319
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mathematical modelling of MSW incineration on a travelling bed.
    Yang YB; Goh YR; Zakaria R; Nasserzadeh V; Swithenbank J
    Waste Manag; 2002; 22(4):369-80. PubMed ID: 12099494
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Life-cycle assessment (EASEWASTE) of two municipal solid waste incineration technologies in China.
    Chen D; Christensen TH
    Waste Manag Res; 2010 Jun; 28(6):508-19. PubMed ID: 20375128
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Medical waste incinerator constructed with locally produced materials: experience during the immunization campaign 2002 against measles in Douala, Cameroon].
    Guévart E; Bita Fouda A; Mbous JA; Makoutode M; Bessaoud K
    Med Trop (Mars); 2009 Jun; 69(3):245-50. PubMed ID: 19702145
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bio-drying of municipal solid waste with high water content by aeration procedures regulation and inoculation.
    Zhang DQ; He PJ; Jin TF; Shao LM
    Bioresour Technol; 2008 Dec; 99(18):8796-802. PubMed ID: 18511273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.