These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 17237042)
1. A hidden Markov model-based approach for identifying timing differences in gene expression under different experimental factors. Yoneya T; Mamitsuka H Bioinformatics; 2007 Apr; 23(7):842-9. PubMed ID: 17237042 [TBL] [Abstract][Full Text] [Related]
2. A mixture model with random-effects components for clustering correlated gene-expression profiles. Ng SK; McLachlan GJ; Wang K; Ben-Tovim Jones L; Ng SW Bioinformatics; 2006 Jul; 22(14):1745-52. PubMed ID: 16675467 [TBL] [Abstract][Full Text] [Related]
3. Continuous hidden process model for time series expression experiments. Shi Y; Klustein M; Simon I; Mitchell T; Bar-Joseph Z Bioinformatics; 2007 Jul; 23(13):i459-67. PubMed ID: 17646331 [TBL] [Abstract][Full Text] [Related]
4. Clustering of change patterns using Fourier coefficients. Kim J; Kim H Bioinformatics; 2008 Jan; 24(2):184-91. PubMed ID: 18025003 [TBL] [Abstract][Full Text] [Related]
5. Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Martin S; Zhang Z; Martino A; Faulon JL Bioinformatics; 2007 Apr; 23(7):866-74. PubMed ID: 17267426 [TBL] [Abstract][Full Text] [Related]
6. Discovering gene expression patterns in time course microarray experiments by ANOVA-SCA. Nueda MJ; Conesa A; Westerhuis JA; Hoefsloot HC; Smilde AK; Talón M; Ferrer A Bioinformatics; 2007 Jul; 23(14):1792-800. PubMed ID: 17519250 [TBL] [Abstract][Full Text] [Related]
7. A supervised hidden markov model framework for efficiently segmenting tiling array data in transcriptional and chIP-chip experiments: systematically incorporating validated biological knowledge. Du J; Rozowsky JS; Korbel JO; Zhang ZD; Royce TE; Schultz MH; Snyder M; Gerstein M Bioinformatics; 2006 Dec; 22(24):3016-24. PubMed ID: 17038339 [TBL] [Abstract][Full Text] [Related]
8. Bayesian variable selection for the analysis of microarray data with censored outcomes. Sha N; Tadesse MG; Vannucci M Bioinformatics; 2006 Sep; 22(18):2262-8. PubMed ID: 16845144 [TBL] [Abstract][Full Text] [Related]
10. A multi-stage approach to clustering and imputation of gene expression profiles. Wong DS; Wong FK; Wood GR Bioinformatics; 2007 Apr; 23(8):998-1005. PubMed ID: 17308340 [TBL] [Abstract][Full Text] [Related]
11. Exploiting sample variability to enhance multivariate analysis of microarray data. Möller-Levet CS; West CM; Miller CJ Bioinformatics; 2007 Oct; 23(20):2733-40. PubMed ID: 17827205 [TBL] [Abstract][Full Text] [Related]
12. Bayesian detection of periodic mRNA time profiles without use of training examples. Andersson CR; Isaksson A; Gustafsson MG BMC Bioinformatics; 2006 Feb; 7():63. PubMed ID: 16469110 [TBL] [Abstract][Full Text] [Related]
13. Variable selection for model-based high-dimensional clustering and its application to microarray data. Wang S; Zhu J Biometrics; 2008 Jun; 64(2):440-8. PubMed ID: 17970821 [TBL] [Abstract][Full Text] [Related]
14. Graph-based consensus clustering for class discovery from gene expression data. Yu Z; Wong HS; Wang H Bioinformatics; 2007 Nov; 23(21):2888-96. PubMed ID: 17872912 [TBL] [Abstract][Full Text] [Related]
15. Fast calculation of pairwise mutual information for gene regulatory network reconstruction. Qiu P; Gentles AJ; Plevritis SK Comput Methods Programs Biomed; 2009 May; 94(2):177-80. PubMed ID: 19167129 [TBL] [Abstract][Full Text] [Related]
16. Bayesian finite Markov mixture model for temporal multi-tissue polygenic patterns. Liang Y; Kelemen A Biom J; 2009 Feb; 51(1):56-69. PubMed ID: 19197952 [TBL] [Abstract][Full Text] [Related]
17. Combined static and dynamic analysis for determining the quality of time-series expression profiles. Simon I; Siegfried Z; Ernst J; Bar-Joseph Z Nat Biotechnol; 2005 Dec; 23(12):1503-8. PubMed ID: 16333294 [TBL] [Abstract][Full Text] [Related]
18. Weighted rank aggregation of cluster validation measures: a Monte Carlo cross-entropy approach. Pihur V; Datta S; Datta S Bioinformatics; 2007 Jul; 23(13):1607-15. PubMed ID: 17483500 [TBL] [Abstract][Full Text] [Related]
20. Using a state-space model with hidden variables to infer transcription factor activities. Li Z; Shaw SM; Yedwabnick MJ; Chan C Bioinformatics; 2006 Mar; 22(6):747-54. PubMed ID: 16403793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]