BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 17237138)

  • 21. Glucosylation of Rho proteins by Clostridium difficile toxin B.
    Just I; Selzer J; Wilm M; von Eichel-Streiber C; Mann M; Aktories K
    Nature; 1995 Jun; 375(6531):500-3. PubMed ID: 7777059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of receptor-binding C-terminal repeats from Clostridium difficile toxin A.
    Ho JG; Greco A; Rupnik M; Ng KK
    Proc Natl Acad Sci U S A; 2005 Dec; 102(51):18373-8. PubMed ID: 16344467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EhRho1, a RhoA-like GTPase of Entamoeba histolytica, is modified by clostridial glucosylating cytotoxins.
    Majumder S; Schmidt G; Lohia A; Aktories K
    Appl Environ Microbiol; 2006 Dec; 72(12):7842-8. PubMed ID: 17056697
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of wild type with recombinant Clostridium difficile toxin A.
    Gerhard R; Burger S; Tatge H; Genth H; Just I; Hofmann F
    Microb Pathog; 2005; 38(2-3):77-83. PubMed ID: 15748809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of Clostridium difficile toxin A.
    Chumbler NM; Rutherford SA; Zhang Z; Farrow MA; Lisher JP; Farquhar E; Giedroc DP; Spiller BW; Melnyk RA; Lacy DB
    Nat Microbiol; 2016 Jan; 1():15002. PubMed ID: 27571750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure of the Rho-activating domain of Escherichia coli cytotoxic necrotizing factor 1.
    Buetow L; Flatau G; Chiu K; Boquet P; Ghosh P
    Nat Struct Biol; 2001 Jul; 8(7):584-8. PubMed ID: 11427886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autocatalytic cleavage of Clostridium difficile toxin B.
    Reineke J; Tenzer S; Rupnik M; Koschinski A; Hasselmayer O; Schrattenholz A; Schild H; von Eichel-Streiber C
    Nature; 2007 Mar; 446(7134):415-9. PubMed ID: 17334356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cholesterol-dependent pore formation of Clostridium difficile toxin A.
    Giesemann T; Jank T; Gerhard R; Maier E; Just I; Benz R; Aktories K
    J Biol Chem; 2006 Apr; 281(16):10808-15. PubMed ID: 16513641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A neutralizing antibody that blocks delivery of the enzymatic cargo of
    Kroh HK; Chandrasekaran R; Zhang Z; Rosenthal K; Woods R; Jin X; Nyborg AC; Rainey GJ; Warrener P; Melnyk RA; Spiller BW; Lacy DB
    J Biol Chem; 2018 Jan; 293(3):941-952. PubMed ID: 29180448
    [No Abstract]   [Full Text] [Related]  

  • 30. Use of a neutralizing antibody helps identify structural features critical for binding of
    Kroh HK; Chandrasekaran R; Rosenthal K; Woods R; Jin X; Ohi MD; Nyborg AC; Rainey GJ; Warrener P; Spiller BW; Lacy DB
    J Biol Chem; 2017 Sep; 292(35):14401-14412. PubMed ID: 28705932
    [No Abstract]   [Full Text] [Related]  

  • 31. Structural basis for the function of Clostridium difficile toxin B.
    Reinert DJ; Jank T; Aktories K; Schulz GE
    J Mol Biol; 2005 Sep; 351(5):973-81. PubMed ID: 16054646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytotoxic effects of the Clostridium difficile toxins.
    Thelestam M; Chaves-Olarte E
    Curr Top Microbiol Immunol; 2000; 250():85-96. PubMed ID: 10981358
    [No Abstract]   [Full Text] [Related]  

  • 33. Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile.
    Dingle T; Wee S; Mulvey GL; Greco A; Kitova EN; Sun J; Lin S; Klassen JS; Palcic MM; Ng KK; Armstrong GD
    Glycobiology; 2008 Sep; 18(9):698-706. PubMed ID: 18509107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The catalytic domains of Clostridium sordellii lethal toxin and related large clostridial glucosylating toxins specifically recognize the negatively charged phospholipids phosphatidylserine and phosphatidic acid.
    Varela Chavez C; Hoos S; Haustant GM; Chenal A; England P; Blondel A; Pauillac S; Lacy DB; Popoff MR
    Cell Microbiol; 2015 Oct; 17(10):1477-93. PubMed ID: 25882477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toxin production by and adhesive properties of Clostridium difficile isolated from humans and horses with antibiotic-associated diarrhea.
    Taha S; Johansson O; Rivera Jonsson S; Heimer D; Krovacek K
    Comp Immunol Microbiol Infect Dis; 2007 May; 30(3):163-74. PubMed ID: 17239950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rho/Ras-GTPase-dependent and -independent activity of clostridial glucosylating toxins.
    Popoff MR; Geny B
    J Med Microbiol; 2011 Aug; 60(Pt 8):1057-1069. PubMed ID: 21349986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural determinants of Clostridium difficile toxin A glucosyltransferase activity.
    Pruitt RN; Chumbler NM; Rutherford SA; Farrow MA; Friedman DB; Spiller B; Lacy DB
    J Biol Chem; 2012 Mar; 287(11):8013-20. PubMed ID: 22267739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The distribution and density of Clostridium difficile toxin receptors on the intestinal mucosa of neonatal pigs.
    Keel MK; Songer JG
    Vet Pathol; 2007 Nov; 44(6):814-22. PubMed ID: 18039894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mode of action of the large clostridial cytotoxins.
    Just I; Hofmann F; Aktories K
    Curr Top Microbiol Immunol; 2000; 250():55-83. PubMed ID: 10981357
    [No Abstract]   [Full Text] [Related]  

  • 40. Upregulation of the immediate early gene product RhoB by exoenzyme C3 from Clostridium limosum and toxin B from Clostridium difficile.
    Huelsenbeck J; Dreger SC; Gerhard R; Fritz G; Just I; Genth H
    Biochemistry; 2007 Apr; 46(16):4923-31. PubMed ID: 17397186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.