These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 17237218)
1. Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Keurentjes JJ; Fu J; Terpstra IR; Garcia JM; van den Ackerveken G; Snoek LB; Peeters AJ; Vreugdenhil D; Koornneef M; Jansen RC Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1708-13. PubMed ID: 17237218 [TBL] [Abstract][Full Text] [Related]
2. Mapping quantitative trait loci for freezing tolerance in a recombinant inbred line population of Arabidopsis thaliana accessions Tenela and C24 reveals REVEILLE1 as negative regulator of cold acclimation. Meissner M; Orsini E; Ruschhaupt M; Melchinger AE; Hincha DK; Heyer AG Plant Cell Environ; 2013 Jul; 36(7):1256-67. PubMed ID: 23240770 [TBL] [Abstract][Full Text] [Related]
3. Quantitative trait loci and candidate genes underlying genotype by environment interaction in the response of Arabidopsis thaliana to drought. El-Soda M; Kruijer W; Malosetti M; Koornneef M; Aarts MG Plant Cell Environ; 2015 Mar; 38(3):585-99. PubMed ID: 25074022 [TBL] [Abstract][Full Text] [Related]
4. An expression quantitative trait loci-guided co-expression analysis for constructing regulatory network using a rice recombinant inbred line population. Wang J; Yu H; Weng X; Xie W; Xu C; Li X; Xiao J; Zhang Q J Exp Bot; 2014 Mar; 65(4):1069-79. PubMed ID: 24420573 [TBL] [Abstract][Full Text] [Related]
5. Quantitative trait loci mapping and transcriptome analysis reveal candidate genes regulating the response to ozone in Arabidopsis thaliana. Xu E; Vaahtera L; Hõrak H; Hincha DK; Heyer AG; Brosché M Plant Cell Environ; 2015 Jul; 38(7):1418-33. PubMed ID: 25496229 [TBL] [Abstract][Full Text] [Related]
8. The genetic architecture of shoot branching in Arabidopsis thaliana: a comparative assessment of candidate gene associations vs. quantitative trait locus mapping. Ehrenreich IM; Stafford PA; Purugganan MD Genetics; 2007 Jun; 176(2):1223-36. PubMed ID: 17435248 [TBL] [Abstract][Full Text] [Related]
9. Combined Use of Genome-Wide Association Data and Correlation Networks Unravels Key Regulators of Primary Metabolism in Arabidopsis thaliana. Wu S; Alseekh S; Cuadros-Inostroza Á; Fusari CM; Mutwil M; Kooke R; Keurentjes JB; Fernie AR; Willmitzer L; Brotman Y PLoS Genet; 2016 Oct; 12(10):e1006363. PubMed ID: 27760136 [TBL] [Abstract][Full Text] [Related]
10. Expression quantitative trait loci analysis in plants. Druka A; Potokina E; Luo Z; Jiang N; Chen X; Kearsey M; Waugh R Plant Biotechnol J; 2010 Jan; 8(1):10-27. PubMed ID: 20055957 [TBL] [Abstract][Full Text] [Related]
11. Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Werner JD; Borevitz JO; Warthmann N; Trainer GT; Ecker JR; Chory J; Weigel D Proc Natl Acad Sci U S A; 2005 Feb; 102(7):2460-5. PubMed ID: 15695584 [TBL] [Abstract][Full Text] [Related]
13. Genetic architecture of regulatory variation in Arabidopsis thaliana. Zhang X; Cal AJ; Borevitz JO Genome Res; 2011 May; 21(5):725-33. PubMed ID: 21467266 [TBL] [Abstract][Full Text] [Related]
14. Mapping quantitative trait loci associated with selenate tolerance in Arabidopsis thaliana. Zhang L; Byrne PF; Pilon-Smits EA New Phytol; 2006; 170(1):33-42. PubMed ID: 16539601 [TBL] [Abstract][Full Text] [Related]
15. Quantitative trait loci controlling leaf venation in Arabidopsis. Rishmawi L; Bühler J; Jaegle B; Hülskamp M; Koornneef M Plant Cell Environ; 2017 Aug; 40(8):1429-1441. PubMed ID: 28252189 [TBL] [Abstract][Full Text] [Related]
16. The genetics of plant metabolism. Keurentjes JJ; Fu J; de Vos CH; Lommen A; Hall RD; Bino RJ; van der Plas LH; Jansen RC; Vreugdenhil D; Koornneef M Nat Genet; 2006 Jul; 38(7):842-9. PubMed ID: 16751770 [TBL] [Abstract][Full Text] [Related]
17. Expression quantitative trait locus mapping across water availability environments reveals contrasting associations with genomic features in Arabidopsis. Lowry DB; Logan TL; Santuari L; Hardtke CS; Richards JH; DeRose-Wilson LJ; McKay JK; Sen S; Juenger TE Plant Cell; 2013 Sep; 25(9):3266-79. PubMed ID: 24045022 [TBL] [Abstract][Full Text] [Related]
18. Linkage maps for Arabidopsis lyrata subsp. lyrata and Arabidopsis lyrata subsp. petraea combining anonymous and Arabidopsis thaliana-derived markers. Beaulieu J; Jean M; Belzile F Genome; 2007 Feb; 50(2):142-50. PubMed ID: 17546079 [TBL] [Abstract][Full Text] [Related]
19. AraQTL - workbench and archive for systems genetics in Arabidopsis thaliana. Nijveen H; Ligterink W; Keurentjes JJ; Loudet O; Long J; Sterken MG; Prins P; Hilhorst HW; de Ridder D; Kammenga JE; Snoek BL Plant J; 2017 Mar; 89(6):1225-1235. PubMed ID: 27995664 [TBL] [Abstract][Full Text] [Related]
20. Genes underlying quantitative variation in ecologically important traits: PIF4 (phytochrome interacting factor 4) is associated with variation in internode length, flowering time, and fruit set in Arabidopsis thaliana. Brock MT; Maloof JN; Weinig C Mol Ecol; 2010 Mar; 19(6):1187-99. PubMed ID: 20456226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]