BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 17237530)

  • 1. Biotin-ligand complexes with streptavidin quantum dots for in vivo cell labeling of membrane receptors.
    Lidke DS; Nagy P; Jovin TM; Arndt-Jovin DJ
    Methods Mol Biol; 2007; 374():69-79. PubMed ID: 17237530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted cellular delivery of quantum dots loaded on and in biotinylated liposomes.
    Sigot V; Arndt-Jovin DJ; Jovin TM
    Bioconjug Chem; 2010 Aug; 21(8):1465-72. PubMed ID: 20715851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide-mediated intracellular delivery of quantum dots.
    Lagerholm BC
    Methods Mol Biol; 2007; 374():105-12. PubMed ID: 17237533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-step conjugation of antibodies to quantum dots for labeling cell surface receptors in mammalian cells.
    Iyer G; Xu J; Weiss S
    Methods Mol Biol; 2011; 751():553-63. PubMed ID: 21674354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated quantification of quantum-dot-labelled epidermal growth factor receptor internalization via multiscale image segmentation.
    Kriete A; Papazoglou E; Edrissi B; Pais H; Pourrezaei K
    J Microsc; 2006 Apr; 222(Pt 1):22-7. PubMed ID: 16734710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly, characterization, and delivery of quantum dot labeled biotinylated lipid particles.
    Sigot V
    Methods Mol Biol; 2014; 1199():113-27. PubMed ID: 25103804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Labeling cell-surface proteins via antibody quantum dot streptavidin conjugates.
    Mason JN; Tomlinson ID; Rosenthal SJ; Blakely RD
    Methods Mol Biol; 2005; 303():35-50. PubMed ID: 15923673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction.
    Lidke DS; Nagy P; Heintzmann R; Arndt-Jovin DJ; Post JN; Grecco HE; Jares-Erijman EA; Jovin TM
    Nat Biotechnol; 2004 Feb; 22(2):198-203. PubMed ID: 14704683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EGF receptor targeted tumor imaging with biotin-PEG-EGF linked to (99m)Tc-HYNIC labeled avidin and streptavidin.
    Jung KH; Park JW; Paik JY; Quach CH; Choe YS; Lee KH
    Nucl Med Biol; 2012 Nov; 39(8):1122-7. PubMed ID: 22819251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo imaging using quantum-dot-conjugated probes.
    S Lidke D; Nagy P; J Arndt-Jovin D
    Curr Protoc Cell Biol; 2007 Sep; Chapter 25():Unit 25.1. PubMed ID: 18228511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ labelling chemistry of respiratory syncytial viruses by employing the biotinylated host-cell membrane protein for tracking the early stage of virus entry.
    Zheng LL; Yang XX; Liu Y; Wan XY; Wu WB; Wang TT; Wang Q; Zhen SJ; Huang CZ
    Chem Commun (Camb); 2014 Dec; 50(99):15776-9. PubMed ID: 25370508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging.
    Muro E; Pons T; Lequeux N; Fragola A; Sanson N; Lenkei Z; Dubertret B
    J Am Chem Soc; 2010 Apr; 132(13):4556-7. PubMed ID: 20235547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotin-4-fluorescein based fluorescence quenching assay for determination of biotin binding capacity of streptavidin conjugated quantum dots.
    Mittal R; Bruchez MP
    Bioconjug Chem; 2011 Mar; 22(3):362-8. PubMed ID: 21314110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compact biocompatible quantum dots functionalized for cellular imaging.
    Liu W; Howarth M; Greytak AB; Zheng Y; Nocera DG; Ting AY; Bawendi MG
    J Am Chem Soc; 2008 Jan; 130(4):1274-84. PubMed ID: 18177042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantum dot-labeled ligand-receptor binding assay for G protein-coupled receptors contained in minimally purified membrane nanopatches.
    Swift JL; Burger MC; Cramb DT
    Methods Mol Biol; 2009; 552():329-41. PubMed ID: 19513661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible dimerization of EGFR revealed by single-molecule fluorescence imaging using quantum dots.
    Kawashima N; Nakayama K; Itoh K; Itoh T; Ishikawa M; Biju V
    Chemistry; 2010 Jan; 16(4):1186-92. PubMed ID: 20024999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid-Specific Labeling of Enveloped Viruses with Quantum Dots for Single-Virus Tracking.
    Zhang LJ; Wang S; Xia L; Lv C; Tang HW; Liang Z; Xiao G; Pang DW
    mBio; 2020 May; 11(3):. PubMed ID: 32430465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical coding of mammalian cells using semiconductor quantum dots.
    Mattheakis LC; Dias JM; Choi YJ; Gong J; Bruchez MP; Liu J; Wang E
    Anal Biochem; 2004 Apr; 327(2):200-8. PubMed ID: 15051536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-bound quantum dot probes for studying the molecular scale dynamics of receptor endocytic trafficking in live cells.
    Rajan SS; Liu HY; Vu TQ
    ACS Nano; 2008 Jun; 2(6):1153-66. PubMed ID: 19206333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-bridged bioconjugation of fluorescent quantum dots for highly sensitive microfluidic protein chips.
    Hu M; He Y; Song S; Yan J; Lu HT; Weng LX; Wang LH; Fan C
    Chem Commun (Camb); 2010 Sep; 46(33):6126-8. PubMed ID: 20664878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.