These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 17237654)

  • 21. In-vitro measurements of the regurgitation of mechanical mitral heart valve prostheses in case of atrial fibrillation.
    Mouret F; Garitey V; Fuseri J; Rieu R
    J Heart Valve Dis; 2001 Mar; 10(2):264-8. PubMed ID: 11297214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hemodynamic and exercise performance with pulsatile and continuous-flow left ventricular assist devices.
    Haft J; Armstrong W; Dyke DB; Aaronson KD; Koelling TM; Farrar DJ; Pagani FD
    Circulation; 2007 Sep; 116(11 Suppl):I8-15. PubMed ID: 17846330
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional flow characteristics in ventricular assist devices: impact of valve design and operating conditions.
    Benk C; Lorenz R; Beyersdorf F; Bock J; Klemm R; Korvink JG; Markl M
    J Thorac Cardiovasc Surg; 2011 Nov; 142(5):1019-26. PubMed ID: 21397258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A statistical approach to the quantitative comparison of pulsatile flow in vitro data of prosthetic heart valve testing.
    Barbaro V; Grigioni M; Daniele C; Boccanera G
    J Heart Valve Dis; 1997 Jan; 6(1):93-100. PubMed ID: 9044088
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro comparison of aortic heart valve prostheses. Part 1: Mechanical valves.
    Knott E; Reul H; Knoch M; Steinseifer U; Rau G
    J Thorac Cardiovasc Surg; 1988 Dec; 96(6):952-61. PubMed ID: 3193804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Off-design considerations of the 50cc Penn State Ventricular Assist Device.
    Oley LA; Manning KB; Fontaine AA; Deutsch S
    Artif Organs; 2005 May; 29(5):378-86. PubMed ID: 15854213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Closing behavior of the mechanical heart valve in a total artificial heart.
    Lee HS; Tsukiya T; Homma A; Taenaka Y; Tatsumi E; Takano H
    J Artif Organs; 2003; 6(1):37-41. PubMed ID: 14598123
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An in-vitro technique for assessment of thrombogenicity in mechanical prosthetic cardiac valves: evaluation with a range of valve types.
    Martin AJ; Christy JR
    J Heart Valve Dis; 2004 May; 13(3):509-20. PubMed ID: 15222300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Evaluation of ultramicroporous expanded polytetrafluoroethylene mitral valve under pulsatile flow condition in vitro].
    Liang Y; Wang WJ; Cai KC; Wang ZK; Li HB
    Nan Fang Yi Ke Da Xue Xue Bao; 2007 May; 27(5):660-2. PubMed ID: 17545083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Left ventricular assist devices decrease fixed pulmonary hypertension in cardiac transplant candidates.
    Zimpfer D; Zrunek P; Roethy W; Czerny M; Schima H; Huber L; Grimm M; Rajek A; Wolner E; Wieselthaler G
    J Thorac Cardiovasc Surg; 2007 Mar; 133(3):689-95. PubMed ID: 17320566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characteristics of mechanical heart valve cavitation in a pneumatic ventricular assist device.
    Lee H; Taenaka Y
    Artif Organs; 2008 Jun; 32(6):453-60. PubMed ID: 18422801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The hemodynamics of the Berlin pulsatile VAD and the role of its MHV configuration.
    Avrahami I; Rosenfeld M; Einav S
    Ann Biomed Eng; 2006 Sep; 34(9):1373-88. PubMed ID: 16838127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of the closing dynamics of mechanical prosthetic heart valves.
    Naemura K; Ohta Y; Fujimoto T; Umezu M; Matsumoto H; Dohi T
    ASAIO J; 1997; 43(5):M401-4. PubMed ID: 9360070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of the bileaflet inlet valve angle on the flow of a pediatric ventricular assist device: Experimental analysis.
    Lemos BLHD; Bortolin VAA; Amaral RL; Mazzetto M; Cestari IA; Meneghini JR
    Artif Organs; 2022 Sep; 46(9):1833-1846. PubMed ID: 35524699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In-vitro testing of three totally supra-annular bileaflet mechanical valves: hydrodynamics in the Sheffield pulse duplicator.
    Bottio T; Tarzia V; Rizzoli G; Gerosa G
    J Heart Valve Dis; 2008 Mar; 17(2):222-6. PubMed ID: 18512495
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Design, manufacturing, and testing of a pulsatile ventricular assist device].
    Leirner AA; Oshiro MS; Hayashida SA; Marques EF; Maizato MJ; Stolf NA; Jatene AD
    Arq Bras Cardiol; 1994 Sep; 63(3):239-45. PubMed ID: 7778999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anatomic fit assessment for the Penn State pediatric ventricular assist device.
    Connell JM; Khalapyan T; Myers JL; Rosenberg G; Weiss WJ
    ASAIO J; 2007; 53(6):687-91. PubMed ID: 18043148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new pulsatile volumetric device with biomorphic valves for the in vitro study of the cardiovascular system.
    Lanzarone E; Vismara R; Fiore GB
    Artif Organs; 2009 Dec; 33(12):1048-62. PubMed ID: 19604227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel pulse duplicator system: evaluation of different valve prostheses.
    Haaf P; Steiner M; Attmann T; Pfister G; Cremer J; Lutter G
    Thorac Cardiovasc Surg; 2009 Feb; 57(1):10-7. PubMed ID: 19169990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Innovative developments of the heart valves designed for use in ventricular assist devices.
    Goubergrits L; Affeld K; Kertzscher U
    Expert Rev Med Devices; 2005 Jan; 2(1):61-71. PubMed ID: 16293030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.