These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 17237913)

  • 1. Epidemiological models with non-exponentially distributed disease stages and applications to disease control.
    Feng Z; Xu D; Zhao H
    Bull Math Biol; 2007 Jul; 69(5):1511-36. PubMed ID: 17237913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness.
    Yan P; Feng Z
    Math Biosci; 2010 Mar; 224(1):43-52. PubMed ID: 20043927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks.
    Yan P
    J Theor Biol; 2008 Mar; 251(2):238-52. PubMed ID: 18191153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the effect of non-pharmaceutical interventions on containing an emerging disease.
    Sang Z; Qiu Z; Yan X; Zou Y
    Math Biosci Eng; 2012 Jan; 9(1):147-64. PubMed ID: 22229401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Final and peak epidemic sizes for SEIR models with quarantine and isolation.
    Feng Z
    Math Biosci Eng; 2007 Oct; 4(4):675-86. PubMed ID: 17924718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integral equation model for the control of a smallpox outbreak.
    Aldis GK; Roberts MG
    Math Biosci; 2005 May; 195(1):1-22. PubMed ID: 15922002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epidemics with general generation interval distributions.
    Miller JC; Davoudi B; Meza R; Slim AC; Pourbohloul B
    J Theor Biol; 2010 Jan; 262(1):107-15. PubMed ID: 19679141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonally varying epidemics with and without latent period: a comparative simulation study.
    Moneim IA
    Math Med Biol; 2007 Mar; 24(1):1-15. PubMed ID: 17317756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks.
    Griffin JT; Garske T; Ghani AC; Clarke PS
    Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluations of Interventions Using Mathematical Models with Exponential and Non-exponential Distributions for Disease Stages: The Case of Ebola.
    Wang X; Shi Y; Feng Z; Cui J
    Bull Math Biol; 2017 Sep; 79(9):2149-2173. PubMed ID: 28721471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bifurcations of an epidemic model with non-linear incidence and infection-dependent removal rate.
    Moghadas SM; Alexander ME
    Math Med Biol; 2006 Sep; 23(3):231-54. PubMed ID: 16648145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A motif-based approach to network epidemics.
    House T; Davies G; Danon L; Keeling MJ
    Bull Math Biol; 2009 Oct; 71(7):1693-706. PubMed ID: 19396497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages.
    Korobeinikov A
    Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contact rate calculation for a basic epidemic model.
    Rhodes CJ; Anderson RM
    Math Biosci; 2008 Nov; 216(1):56-62. PubMed ID: 18783724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of time distribution shape on a complex epidemic model.
    Camitz M; Svensson A
    Bull Math Biol; 2009 Nov; 71(8):1902-13. PubMed ID: 19475454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of the infection period distribution on the epidemic spread in a metapopulation model.
    Vergu E; Busson H; Ezanno P
    PLoS One; 2010 Feb; 5(2):e9371. PubMed ID: 20195473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of horizontal incidence in the occurrence and control of chaos in an eco-epidemiological system.
    Chatterjee S; Kundu K; Chattopadhyay J
    Math Med Biol; 2007 Sep; 24(3):301-26. PubMed ID: 17804465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new SEIR epidemic model with applications to the theory of eradication and control of diseases, and to the calculation of R0.
    Huang SZ
    Math Biosci; 2008 Sep; 215(1):84-104. PubMed ID: 18621064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-species epidemic model with spatial dynamics.
    Arino J; Davis JR; Hartley D; Jordan R; Miller JM; van den Driessche P
    Math Med Biol; 2005 Jun; 22(2):129-42. PubMed ID: 15778332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate.
    Huang G; Takeuchi Y; Ma W; Wei D
    Bull Math Biol; 2010 Jul; 72(5):1192-207. PubMed ID: 20091354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.