These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 17237981)
1. Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Oraby H; Venkatesh B; Dale B; Ahmad R; Ransom C; Oehmke J; Sticklen M Transgenic Res; 2007 Dec; 16(6):739-49. PubMed ID: 17237981 [TBL] [Abstract][Full Text] [Related]
2. Expression of an Acidothermus cellulolyticus endoglucanase in transgenic rice seeds. Zhang Q; Zhang W; Lin C; Xu X; Shen Z Protein Expr Purif; 2012 Apr; 82(2):279-83. PubMed ID: 22306743 [TBL] [Abstract][Full Text] [Related]
3. Heterologous Acidothermus cellulolyticus 1,4-beta-endoglucanase E1 produced within the corn biomass converts corn stover into glucose. Ransom C; Balan V; Biswas G; Dale B; Crockett E; Sticklen M Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):207-19. PubMed ID: 18478390 [TBL] [Abstract][Full Text] [Related]
4. Activity and ecological implications of maize-expressed transgenic endo-1,4-β-D-glucanase in agricultural soils. Kenny AJ; Wolt JD Environ Toxicol Chem; 2014 Sep; 33(9):1996-2003. PubMed ID: 24863456 [TBL] [Abstract][Full Text] [Related]
5. High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid. Chou HL; Dai Z; Hsieh CW; Ku MS Biotechnol Biofuels; 2011 Dec; 4():58. PubMed ID: 22152050 [TBL] [Abstract][Full Text] [Related]
6. Overexpression of an endo-1,4-β-glucanase V gene (EGV) from Trichoderma reesei leads to the accumulation of cellulase activity in transgenic rice. Li XY; Liu F; Hu YF; Xia M; Cheng BJ; Zhu SW; Ma Q Genet Mol Res; 2015 Dec; 14(4):17519-28. PubMed ID: 26782396 [TBL] [Abstract][Full Text] [Related]
8. A Metagenomic Advance for the Cloning and Characterization of a Cellulase from Red Rice Crop Residues. Meneses C; Silva B; Medeiros B; Serrato R; Johnston-Monje D Molecules; 2016 Jun; 21(7):. PubMed ID: 27347917 [TBL] [Abstract][Full Text] [Related]
9. Effects of ammonia fiber explosion treatment on activity of endoglucanase from Acidothermus cellulolyticus in transgenic plant. Teymouri F; Alizadeh H; Laureano-Pérez L; Dale B; Sticklen M Appl Biochem Biotechnol; 2004; 113-116():1183-91. PubMed ID: 15054226 [TBL] [Abstract][Full Text] [Related]
10. Bipartite and tripartite Cucumber mosaic virus-based vectors for producing the Acidothermus cellulolyticus endo-1,4-β-glucanase and other proteins in non-transgenic plants. Hwang MS; Lindenmuth BE; McDonald KA; Falk BW BMC Biotechnol; 2012 Sep; 12():66. PubMed ID: 22999234 [TBL] [Abstract][Full Text] [Related]
12. Customized optimization of cellulase mixtures for differently pretreated rice straw. Kim IJ; Jung JY; Lee HJ; Park HS; Jung YH; Park K; Kim KH Bioprocess Biosyst Eng; 2015 May; 38(5):929-37. PubMed ID: 25547288 [TBL] [Abstract][Full Text] [Related]
13. Subcellular targeting is a key condition for high-level accumulation of cellulase protein in transgenic maize seed. Hood EE; Love R; Lane J; Bray J; Clough R; Pappu K; Drees C; Hood KR; Yoon S; Ahmad A; Howard JA Plant Biotechnol J; 2007 Nov; 5(6):709-19. PubMed ID: 17614952 [TBL] [Abstract][Full Text] [Related]
14. A high performance Trichoderma reesei strain that reveals the importance of xylanase III in cellulosic biomass conversion. Nakazawa H; Kawai T; Ida N; Shida Y; Shioya K; Kobayashi Y; Okada H; Tani S; Sumitani JI; Kawaguchi T; Morikawa Y; Ogasawara W Enzyme Microb Technol; 2016 Jan; 82():89-95. PubMed ID: 26672453 [TBL] [Abstract][Full Text] [Related]
15. Expression of Acidothermus cellulolyticus endoglucanase E1 in transgenic tobacco: biochemical characteristics and physiological effects. Dai Z; Hooker BS; Anderson DB; Thomas SR Transgenic Res; 2000 Feb; 9(1):43-54. PubMed ID: 10853268 [TBL] [Abstract][Full Text] [Related]
16. Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Zhong C; Lau MW; Balan V; Dale BE; Yuan YJ Appl Microbiol Biotechnol; 2009 Sep; 84(4):667-76. PubMed ID: 19399494 [TBL] [Abstract][Full Text] [Related]
17. Mushroom spent straw: a potential substrate for an ethanol-based biorefinery. Balan V; da Costa Sousa L; Chundawat SPS; Vismeh R; Jones AD; Dale BE J Ind Microbiol Biotechnol; 2008 May; 35(5):293-301. PubMed ID: 18180966 [TBL] [Abstract][Full Text] [Related]
18. Ammonia fiber expansion (AFEX) pretreatment, enzymatic hydrolysis, and fermentation on empty palm fruit bunch fiber (EPFBF) for cellulosic ethanol production. Lau MJ; Lau MW; Gunawan C; Dale BE Appl Biochem Biotechnol; 2010 Nov; 162(7):1847-57. PubMed ID: 20419480 [TBL] [Abstract][Full Text] [Related]
19. Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source. Hideno A; Inoue H; Tsukahara K; Yano S; Fang X; Endo T; Sawayama S Enzyme Microb Technol; 2011 Feb; 48(2):162-8. PubMed ID: 22112826 [TBL] [Abstract][Full Text] [Related]
20. A novel approach to produce glucose from the supernatant obtained upon the dilute acid pre-treatment of rice straw and synergistic action of hydrolytic enzymes producing microbes. Chownk M; Sangwan RS; Yadav SK Braz J Microbiol; 2019 Apr; 50(2):395-404. PubMed ID: 30637642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]