These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 17237981)
21. Expression and characterization of Acidothermus cellulolyticus E1 endoglucanase in transgenic duckweed Lemna minor 8627. Sun Y; Cheng JJ; Himmel ME; Skory CD; Adney WS; Thomas SR; Tisserat B; Nishimura Y; Yamamoto YT Bioresour Technol; 2007 Nov; 98(15):2866-72. PubMed ID: 17127051 [TBL] [Abstract][Full Text] [Related]
22. Expression and import of an active cellulase from a thermophilic bacterium into the chloroplast both in vitro and in vivo. Jin R; Richter S; Zhong R; Lamppa GK Plant Mol Biol; 2003 Mar; 51(4):493-507. PubMed ID: 12650616 [TBL] [Abstract][Full Text] [Related]
23. Enhanced biomass delignification and enzymatic saccharification of canola straw by steam-explosion pretreatment. Garmakhany AD; Kashaninejad M; Aalami M; Maghsoudlou Y; Khomieri M; Tabil LG J Sci Food Agric; 2014 Jun; 94(8):1607-13. PubMed ID: 24186725 [TBL] [Abstract][Full Text] [Related]
24. Plant genetic engineering to improve biomass characteristics for biofuels. Sticklen M Curr Opin Biotechnol; 2006 Jun; 17(3):315-9. PubMed ID: 16701991 [TBL] [Abstract][Full Text] [Related]
25. Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane. Harrison MD; Geijskes J; Coleman HD; Shand K; Kinkema M; Palupe A; Hassall R; Sainz M; Lloyd R; Miles S; Dale JL Plant Biotechnol J; 2011 Oct; 9(8):884-96. PubMed ID: 21356003 [TBL] [Abstract][Full Text] [Related]
26. Optimization of Acidothermus cellulolyticus endoglucanase (E1) production in transgenic tobacco plants by transcriptional, post-transcription and post-translational modification. Dai Z; Hooker BS; Quesenberry RD; Thomas SR Transgenic Res; 2005 Oct; 14(5):627-43. PubMed ID: 16245154 [TBL] [Abstract][Full Text] [Related]
27. OsGLU1, a putative membrane-bound endo-1,4-beta-D-glucanase from rice, affects plant internode elongation. Zhou HL; He SJ; Cao YR; Chen T; Du BX; Chu CC; Zhang JS; Chen SY Plant Mol Biol; 2006 Jan; 60(1):137-51. PubMed ID: 16463105 [TBL] [Abstract][Full Text] [Related]
28. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. Li F; Xie G; Huang J; Zhang R; Li Y; Zhang M; Wang Y; Li A; Li X; Xia T; Qu C; Hu F; Ragauskas AJ; Peng L Plant Biotechnol J; 2017 Sep; 15(9):1093-1104. PubMed ID: 28117552 [TBL] [Abstract][Full Text] [Related]
29. Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Bak JS; Ko JK; Choi IG; Park YC; Seo JH; Kim KH Biotechnol Bioeng; 2009 Oct; 104(3):471-82. PubMed ID: 19591194 [TBL] [Abstract][Full Text] [Related]
30. Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Krishnan C; Sousa Lda C; Jin M; Chang L; Dale BE; Balan V Biotechnol Bioeng; 2010 Oct; 107(3):441-50. PubMed ID: 20521302 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. Taniguchi M; Suzuki H; Watanabe D; Sakai K; Hoshino K; Tanaka T J Biosci Bioeng; 2005 Dec; 100(6):637-43. PubMed ID: 16473773 [TBL] [Abstract][Full Text] [Related]
32. Expression of the Acidothermus cellulolyticus E1 endoglucanase in Caldicellulosiruptor bescii enhances its ability to deconstruct crystalline cellulose. Chung D; Young J; Cha M; Brunecky R; Bomble YJ; Himmel ME; Westpheling J Biotechnol Biofuels; 2015; 8():113. PubMed ID: 26269712 [TBL] [Abstract][Full Text] [Related]
33. Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid. Kim JW; Kim KS; Lee JS; Park SM; Cho HY; Park JC; Kim JS Bioresour Technol; 2011 Oct; 102(19):8992-9. PubMed ID: 21784629 [TBL] [Abstract][Full Text] [Related]
37. Enzyme characterization for hydrolysis of AFEX and liquid hot-water pretreated distillers' grains and their conversion to ethanol. Dien BS; Ximenes EA; O'Bryan PJ; Moniruzzaman M; Li XL; Balan V; Dale B; Cotta MA Bioresour Technol; 2008 Aug; 99(12):5216-25. PubMed ID: 17996446 [TBL] [Abstract][Full Text] [Related]
38. Characterization of truncated endo-β-1,4-glucanases from a compost metagenomic library and their saccharification potentials. Lee JP; Lee HW; Na HB; Lee JH; Hong YJ; Jeon JM; Kwon EJ; Kim SK; Kim H Int J Biol Macromol; 2018 Aug; 115():554-562. PubMed ID: 29698758 [TBL] [Abstract][Full Text] [Related]
39. Endo-1,3;1,4-beta-glucanase from coleoptiles of rice and maize: role in the regulation of plant growth. Thomas BR; Inouhe M; Simmons CR; Nevins DJ Int J Biol Macromol; 2000 Apr; 27(2):145-9. PubMed ID: 10771064 [TBL] [Abstract][Full Text] [Related]
40. Optimization of enzymatic hydrolysis of pretreated rice straw and ethanol production. Singh A; Bishnoi NR Appl Microbiol Biotechnol; 2012 Feb; 93(4):1785-93. PubMed ID: 22249725 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]