BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 17237989)

  • 1. Design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct.
    Myung D; Koh W; Bakri A; Zhang F; Marshall A; Ko J; Noolandi J; Carrasco M; Cochran JR; Frank CW; Ta CN
    Biomed Microdevices; 2007 Dec; 9(6):911-22. PubMed ID: 17237989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, characterization, and in vitro evaluation of a hydrogel-based corneal onlay.
    Oelker AM; Grinstaff MW
    IEEE Trans Nanobioscience; 2012 Mar; 11(1):37-45. PubMed ID: 21908258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose-permeable interpenetrating polymer network hydrogels for corneal implant applications: a pilot study.
    Myung D; Farooqui N; Waters D; Schaber S; Koh W; Carrasco M; Noolandi J; Frank CW; Ta CN
    Curr Eye Res; 2008 Jan; 33(1):29-43. PubMed ID: 18214741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen and glycopolymer based hydrogel for potential corneal application.
    Deng C; Li F; Hackett JM; Chaudhry SH; Toll FN; Toye B; Hodge W; Griffith M
    Acta Biomater; 2010 Jan; 6(1):187-94. PubMed ID: 19632359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Modification of PMMA to Improve Adhesion to Corneal Substitutes in a Synthetic Core-Skirt Keratoprosthesis.
    Riau AK; Mondal D; Yam GH; Setiawan M; Liedberg B; Venkatraman SS; Mehta JS
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21690-702. PubMed ID: 26389670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and evaluation of artificial cornea with core-skirt design using polyhydroxyethyl methacrylate and graphite.
    Sinha M; Gupte T
    Int Ophthalmol; 2018 Jun; 38(3):1225-1233. PubMed ID: 28602017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering.
    Rafat M; Li F; Fagerholm P; Lagali NS; Watsky MA; Munger R; Matsuura T; Griffith M
    Biomaterials; 2008 Oct; 29(29):3960-72. PubMed ID: 18639928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corneal epithelial adhesion strength to tethered-protein/peptide modified hydrogel surfaces.
    Wallace C; Jacob JT; Stoltz A; Bi J; Bundy K
    J Biomed Mater Res A; 2005 Jan; 72(1):19-24. PubMed ID: 15534866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technique of surface modification of a cell-adhesion-resistant hydrogel by a cell-adhesion-available inorganic microarray.
    Sun J; Graeter SV; Yu L; Duan S; Spatz JP; Ding J
    Biomacromolecules; 2008 Oct; 9(10):2569-72. PubMed ID: 18646821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpenetrating polymer network (IPN) as a permanent joint between the elements of a new type of artificial cornea.
    Chirila TV; Vijayasekaran S; Horne R; Chen YC; Dalton PD; Constable IJ; Crawford GJ
    J Biomed Mater Res; 1994 Jun; 28(6):745-53. PubMed ID: 8071386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile fabrication of superporous and biocompatible hydrogel scaffolds for artificial corneal periphery.
    Lee YP; Liu HY; Lin PC; Lee YH; Yu LR; Hsieh CC; Shih PJ; Shih WP; Wang IJ; Yen JY; Dai CA
    Colloids Surf B Biointerfaces; 2019 Mar; 175():26-35. PubMed ID: 30513471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of ophthalmically compatible hydrogels composed of poly(dimethyl siloxane-urethane)/Pluronic F127.
    Lin CH; Lin WC; Yang MC
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):36-44. PubMed ID: 19188049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering copolymeric artificial cornea with salt porogen.
    Zellander A; Wardlow M; Djalilian A; Zhao C; Abiade J; Cho M
    J Biomed Mater Res A; 2014 Jun; 102(6):1799-808. PubMed ID: 23784918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes.
    Liu W; Deng C; McLaughlin CR; Fagerholm P; Lagali NS; Heyne B; Scaiano JC; Watsky MA; Kato Y; Munger R; Shinozaki N; Li F; Griffith M
    Biomaterials; 2009 Mar; 30(8):1551-9. PubMed ID: 19097643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composite core-and-skirt collagen hydrogels with differential degradation for corneal therapeutic applications.
    Rafat M; Xeroudaki M; Koulikovska M; Sherrell P; Groth F; Fagerholm P; Lagali N
    Biomaterials; 2016 Mar; 83():142-55. PubMed ID: 26773670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen-immobilized hydrogel as a material for lamellar keratoplasty.
    Kobayashi H; Ikada Y; Moritera T; Ogura Y; Honda Y
    J Appl Biomater; 1991; 2(4):261-7. PubMed ID: 10149399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea.
    Zheng LL; Vanchinathan V; Dalal R; Noolandi J; Waters DJ; Hartmann L; Cochran JR; Frank CW; Yu CQ; Ta CN
    J Biomed Mater Res A; 2015 Oct; 103(10):3157-65. PubMed ID: 25778285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue reactions induced by modified poly(vinyl alcohol) hydrogels in rabbit cornea.
    Kobayashi H; Ikada Y; Moritera T; Ogura Y; Honda Y
    J Biomed Mater Res; 1992 Dec; 26(12):1583-98. PubMed ID: 1484064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A core-skirt designed artificial cornea with orthogonal microfiber grid scaffold.
    Wang J; Chen Y; Bai Y; Quan D; Wang Z; Xiong L; Shao Z; Sun W; Mi S
    Exp Eye Res; 2020 Jun; 195():108037. PubMed ID: 32343943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.