BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 17238162)

  • 1. Enhanced retention of polymer physical characteristics and mechanical strength of 70:30 poly(L-lactide-co-D,L-lactide) after ethylene oxide sterilization.
    McManus AJ; Moser RC; Dabkowski RB; Thomas KA
    J Biomed Mater Res B Appl Biomater; 2007 Aug; 82(2):325-33. PubMed ID: 17238162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sterilization and strength of 70/30 polylactide cages: e-beam versus ethylene oxide.
    Smit TH; Thomas KA; Hoogendoorn RJ; Strijkers GJ; Helder MN; Wuisman PI
    Spine (Phila Pa 1976); 2007 Apr; 32(7):742-7. PubMed ID: 17414907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strength retention of 70:30 poly(L-lactide-co-D,L-lactide) following real-time aging.
    Moser RC; McManus AJ; Riley SL; Thomas KA
    J Biomed Mater Res B Appl Biomater; 2005 Oct; 75(1):56-63. PubMed ID: 16001395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization.
    Dånmark S; Finne-Wistrand A; Schander K; Hakkarainen M; Arvidson K; Mustafa K; Albertsson AC
    Acta Biomater; 2011 May; 7(5):2035-46. PubMed ID: 21316490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of laser cut poly(L-lactide) micro-specimens: implications for stent design, manufacture, and sterilization.
    Grabow N; Schlun M; Sternberg K; Hakansson N; Kramer S; Schmitz KP
    J Biomech Eng; 2005 Feb; 127(1):25-31. PubMed ID: 15868785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of ethylene oxide, glow discharge and electron beam on the surface characteristics of poly(L-lactide-co-caprolactone) and the corresponding cellular response of adipose stem cells.
    Kroeze RJ; Helder MN; Roos WH; Wuite GJ; Bank RA; Smit TH
    Acta Biomater; 2010 Jun; 6(6):2060-5. PubMed ID: 19944190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of gamma, ethylene oxide, electron beam, and plasma sterilization on the behaviour of SR-PLLA fibres in vitro.
    Nuutinen JP; Clerc C; Virta T; Törmälä P
    J Biomater Sci Polym Ed; 2002; 13(12):1325-36. PubMed ID: 12555899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(ethylene glycol)-poly(L-lactide) diblock copolymer prevents aggregation of poly(L-lactide) microspheres during ethylene oxide gas sterilization.
    Choi Y; Kim SY; Moon MH; Kim SH; Lee KS; Byun Y
    Biomaterials; 2001 May; 22(9):995-1004. PubMed ID: 11311019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing, annealing and sterilisation of poly-L-lactide.
    Weir NA; Buchanan FJ; Orr JF; Farrar DF; Boyd A
    Biomaterials; 2004 Aug; 25(18):3939-49. PubMed ID: 15046884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sterility, mechanical properties, and molecular stability of polylactide internal-fixation devices treated with low-temperature plasmas.
    Gogolewski S; Mainil-Varlet P; Dillon JG
    J Biomed Mater Res; 1996 Oct; 32(2):227-35. PubMed ID: 8884500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ethylene oxide gas sterilization on physical properties of poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) microspheres.
    Ah YC; Choi Y; Kim SY; Kim SH; Lee KS; Byun Y
    J Biomater Sci Polym Ed; 2001; 12(7):783-99. PubMed ID: 11587041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue strength of polyethylene after sterilization by gamma irradiation or ethylene oxide.
    Ries MD; Weaver K; Rose RM; Gunther J; Sauer W; Beals N
    Clin Orthop Relat Res; 1996 Dec; (333):87-95. PubMed ID: 8981884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sterilization on the physicochemical properties of molded poly(L-lactic acid).
    Peniston SJ; Choi SJ
    J Biomed Mater Res B Appl Biomater; 2007 Jan; 80(1):67-77. PubMed ID: 16767732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding of how the properties of medical grade lactide based copolymer scaffolds influence adipose tissue regeneration: Sterilization and a systematic in vitro assessment.
    Jain S; Yassin MA; Fuoco T; Mohamed-Ahmed S; Vindenes H; Mustafa K; Finne-Wistrand A
    Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112020. PubMed ID: 33947531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sterilization effects on poly(glycerol dodecanedioate): A biodegradable shape memory elastomer for biomedical applications.
    Ramaraju H; McAtee AM; Akman RE; Verga AS; Bocks ML; Hollister SJ
    J Biomed Mater Res B Appl Biomater; 2023 Apr; 111(4):958-970. PubMed ID: 36479954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing the sterilization of PLGA scaffolds for use in tissue engineering.
    Holy CE; Cheng C; Davies JE; Shoichet MS
    Biomaterials; 2001 Jan; 22(1):25-31. PubMed ID: 11085380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a faster resorbing polymer after real time aging.
    McManus AJ; Moser RC; Thomas KA
    J Biomed Mater Res B Appl Biomater; 2006 Aug; 78(2):358-63. PubMed ID: 16362966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of different steam-sterilization programs on material properties of poly(L-lactide).
    Rozema FR; Bos RR; Boering G; van Asten JA; Nijenhuis AJ; Pennings AJ
    J Appl Biomater; 1991; 2(1):23-8. PubMed ID: 10150042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of sterilization on the physical and structural characteristics of polyhydroxyoctanoate (PHO).
    Marois Y; Zhang Z; Vert M; Deng X; Lenz R; Guidoin R
    J Biomater Sci Polym Ed; 1999; 10(4):469-82. PubMed ID: 10227468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties and in vitro degradation of self-reinforced radiopaque bioresorbable polylactide fibres.
    Nuutinen JP; Clerc C; Törmälä P
    J Biomater Sci Polym Ed; 2003; 14(7):665-76. PubMed ID: 12903735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.