These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 17238168)

  • 1. Improved grid-based algorithm for Bader charge allocation.
    Sanville E; Kenny SD; Smith R; Henkelman G
    J Comput Chem; 2007 Apr; 28(5):899-908. PubMed ID: 17238168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A grid-based Bader analysis algorithm without lattice bias.
    Tang W; Sanville E; Henkelman G
    J Phys Condens Matter; 2009 Feb; 21(8):084204. PubMed ID: 21817356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic charges derived from electrostatic potentials for molecular and periodic systems.
    Chen DL; Stern AC; Space B; Johnson JK
    J Phys Chem A; 2010 Sep; 114(37):10225-33. PubMed ID: 20795694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient grid-based scheme to compute QTAIM atomic properties without explicit calculation of zero-flux surfaces.
    Rodríguez JI; Köster AM; Ayers PW; Santos-Valle A; Vela A; Merino G
    J Comput Chem; 2009 May; 30(7):1082-92. PubMed ID: 18942734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate and efficient algorithm for Bader charge integration.
    Yu M; Trinkle DR
    J Chem Phys; 2011 Feb; 134(6):064111. PubMed ID: 21322665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects.
    Rocchia W; Sridharan S; Nicholls A; Alexov E; Chiabrera A; Honig B
    J Comput Chem; 2002 Jan; 23(1):128-37. PubMed ID: 11913378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis.
    Fonseca Guerra C; Handgraaf JW; Baerends EJ; Bickelhaupt FM
    J Comput Chem; 2004 Jan; 25(2):189-210. PubMed ID: 14648618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grid-based energy density analysis: implementation and assessment.
    Imamura Y; Takahashi A; Nakai H
    J Chem Phys; 2007 Jan; 126(3):034103. PubMed ID: 17249861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rendering of quantum topological atoms and bonds.
    Rafat M; Devereux M; Popelier PL
    J Mol Graph Model; 2005 Oct; 24(2):111-20. PubMed ID: 15970447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpolating moving least-squares methods for fitting potential energy surfaces: computing high-density potential energy surface data from low-density ab initio data points.
    Dawes R; Thompson DL; Guo Y; Wagner AF; Minkoff M
    J Chem Phys; 2007 May; 126(18):184108. PubMed ID: 17508793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio wavenumber accurate spectroscopy: 1CH2 and HCN vibrational levels on automatically generated IMLS potential energy surfaces.
    Dawes R; Wagner AF; Thompson DL
    J Phys Chem A; 2009 Apr; 113(16):4709-21. PubMed ID: 19371124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a modified Oszlányi and Süto ab initio charge-flipping algorithm to experimental data.
    Wu JS; Spence JC; O'Keeffe M; Groy TL
    Acta Crystallogr A; 2004 Jul; 60(Pt 4):326-30. PubMed ID: 15218212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights in quantum chemical topology studies using numerical grid-based analyses.
    Kozlowski D; Pilmé J
    J Comput Chem; 2011 Nov; 32(15):3207-17. PubMed ID: 21953556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A generalization of the charge equilibration method for nonmetallic materials.
    Nistor RA; Polihronov JG; Müser MH; Mosey NJ
    J Chem Phys; 2006 Sep; 125(9):094108. PubMed ID: 16965073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General methodology to optimize damping functions to account for charge penetration effects in electrostatic calculations using multicentered multipolar expansions.
    Werneck AS; Filho TM; Dardenne LE
    J Phys Chem A; 2008 Jan; 112(2):268-80. PubMed ID: 18095663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dual-level state-specific time-dependent density-functional theory.
    Tokura S; Sato T; Tsuneda T; Nakajima T; Hirao K
    J Comput Chem; 2008 Jun; 29(8):1187-97. PubMed ID: 18161684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The prediction of (1)H chemical shifts in amines: a semiempirical and ab initio investigation.
    Basso EA; Gauze GF; Abraham RJ
    Magn Reson Chem; 2007 Sep; 45(9):749-57. PubMed ID: 17640030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positron binding energies for alkali hydrides.
    Buenker RJ; Liebermann HP; Melnikov V; Tachikawa M; Pichl L; Kimura M
    J Phys Chem A; 2005 Jul; 109(26):5956-64. PubMed ID: 16833930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate theoretical chemistry with coupled pair models.
    Neese F; Hansen A; Wennmohs F; Grimme S
    Acc Chem Res; 2009 May; 42(5):641-8. PubMed ID: 19296607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parametrization of analytic interatomic potential functions using neural networks.
    Malshe M; Narulkar R; Raff LM; Hagan M; Bukkapatnam S; Komanduri R
    J Chem Phys; 2008 Jul; 129(4):044111. PubMed ID: 18681638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.