BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 17238206)

  • 21. [Methanogens and manipulation of methane production in the rumen].
    Guo YQ; Hu WL; Liu JX
    Wei Sheng Wu Xue Bao; 2005 Feb; 45(1):145-8. PubMed ID: 15847184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of nitrate-mediated microbial control of souring in oil reservoirs on the extent of corrosion.
    Nemati M; Jenneman GE; Voordouw G
    Biotechnol Prog; 2001; 17(5):852-9. PubMed ID: 11587574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Competitive partitioning of denitrification pathways during arrested methanogenesis: Implications in ammonium recovery, N
    Tanvir RU; Li Y; Hu Z
    Bioresour Technol; 2024 Jun; 401():130717. PubMed ID: 38642664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial oxidation of 1,2-dichloroethane under anoxic conditions with nitrate as electron acceptor in mixed and pure cultures.
    Dinglasan-Panlilio MJ; Dworatzek S; Mabury S; Edwards E
    FEMS Microbiol Ecol; 2006 Jun; 56(3):355-64. PubMed ID: 16689868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methanogenic activity in human periodontal pocket.
    Robichaux M; Howell M; Boopathy R
    Curr Microbiol; 2003 Jan; 46(1):53-8. PubMed ID: 12432465
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of acetate and propionate on the performance of a photosynthetic biofilm reactor for sulfide removal.
    Hurse TJ; Keller J
    Biotechnol Bioeng; 2005 Jan; 89(2):178-87. PubMed ID: 15584053
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of oxygen on biodegradation of benzoate and 3-chlorobenzoate in a denitrifying chemostat.
    Deniz T; Cinar O; Grady CP
    Water Res; 2004 Dec; 38(20):4524-34. PubMed ID: 15556227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Competition between oxygen and nitrate respirations in continuous culture of Pseudomonas aeruginosa performing aerobic denitrification.
    Chen F; Xia Q; Ju LK
    Biotechnol Bioeng; 2006 Apr; 93(6):1069-78. PubMed ID: 16435399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of phenolic compounds from a petrochemical effluent with a methanogenic consortium.
    Charest A; Bisaillon JG; Lépine F; Beaudet R
    Can J Microbiol; 1999 Mar; 45(3):235-41. PubMed ID: 10408096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of metabolic inhibitors to study H2 consumption by human feces: evidence for a pathway other than methanogenesis and sulfate reduction.
    Strocchi A; Ellis CJ; Levitt MD
    J Lab Clin Med; 1993 Feb; 121(2):320-7. PubMed ID: 8433043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Riboflavin- and cobalamin-mediated biodegradation of chloroform in a methanogenic consortium.
    Guerrero-Barajas C; Field JA
    Biotechnol Bioeng; 2005 Mar; 89(5):539-50. PubMed ID: 15669086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biotransformation of phosphogypsum in media containing different forms of nitrogen.
    Rzeczycka M; Mycielski R; Kowalski W; Gałazka M
    Acta Microbiol Pol; 2001; 50(3-4):281-9. PubMed ID: 11930996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrate promotes biological oxidation of sulfide in wastewaters: experiment at plant-scale.
    García de Lomas J; Corzo A; Gonzalez JM; Andrades JA; Iglesias E; Montero MJ
    Biotechnol Bioeng; 2006 Mar; 93(4):801-11. PubMed ID: 16255035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reductive decolourisation of azo dyes by mesophilic and thermophilic methanogenic consortia.
    Cervantes FJ; dos Santos AB; de Madrid MP; Stams AJ; van Lier JB
    Water Sci Technol; 2005; 52(1-2):351-6. PubMed ID: 16180449
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulphate reduction and methanogenesis in the ovine rumen and porcine caecum: a comparison of two microbial ecosystems.
    Ushida K; Ohashi Y; Tokura M; Miyazaki K; Kojima Y
    Dtsch Tierarztl Wochenschr; 1995 Apr; 102(4):154-6. PubMed ID: 7555693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of reactive media composition and co-contaminants on sulfur-based autotrophic denitrification.
    Moon HS; Chang SW; Nam K; Choe J; Kim JY
    Environ Pollut; 2006 Dec; 144(3):802-7. PubMed ID: 16632130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Effect of inorganic electron acceptors on the bacterial formation of methane from cellulose].
    Bonch-Osmolovskaia EA; Vedenina IIa; Balashiva VV
    Mikrobiologiia; 1978; 47(4):611-6. PubMed ID: 703642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of molybdate on methanogenic and sulfidogenic activity of biomass.
    Patidar SK; Tare V
    Bioresour Technol; 2005 Jul; 96(11):1215-22. PubMed ID: 15734307
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial biodegradation of aliphatic sulfides under aerobic carbon- or sulfur-limited growth conditions.
    Kirkwood KM; Ebert S; Foght JM; Fedorak PM; Gray MR
    J Appl Microbiol; 2005; 99(6):1444-54. PubMed ID: 16313417
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of a novel biocatalyst system for sulfide oxidation.
    McComas C; Sublette KL; Jenneman G; Bala G
    Biotechnol Prog; 2001; 17(3):439-46. PubMed ID: 11386863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.