These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 17238235)
1. Global transcriptional profiling of Candida albicans cwt1 null mutant. Moreno I; Castillo L; Sentandreu R; Valentin E Yeast; 2007 Apr; 24(4):357-70. PubMed ID: 17238235 [TBL] [Abstract][Full Text] [Related]
2. Dosage-dependent roles of the Cwt1 transcription factor for cell wall architecture, morphogenesis, drug sensitivity and virulence in Candida albicans. Moreno I; Martinez-Esparza M; Laforet LC; Sentandreu R; Ernst JF; Valentin E Yeast; 2010 Feb; 27(2):77-87. PubMed ID: 19908200 [TBL] [Abstract][Full Text] [Related]
3. Defining Candida albicans stationary phase by cellular and DNA replication, gene expression and regulation. Uppuluri P; Chaffin WL Mol Microbiol; 2007 Jun; 64(6):1572-86. PubMed ID: 17555439 [TBL] [Abstract][Full Text] [Related]
4. RBR1, a novel pH-regulated cell wall gene of Candida albicans, is repressed by RIM101 and activated by NRG1. Lotz H; Sohn K; Brunner H; Muhlschlegel FA; Rupp S Eukaryot Cell; 2004 Jun; 3(3):776-84. PubMed ID: 15189998 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks. Setiadi ER; Doedt T; Cottier F; Noffz C; Ernst JF J Mol Biol; 2006 Aug; 361(3):399-411. PubMed ID: 16854431 [TBL] [Abstract][Full Text] [Related]
6. Identification and functional characterization of a novel Candida albicans gene CaMNN5 that suppresses the iron-dependent growth defect of Saccharomyces cerevisiae aft1Delta mutant. Bai C; Chan FY; Wang Y Biochem J; 2005 Jul; 389(Pt 1):27-35. PubMed ID: 15725072 [TBL] [Abstract][Full Text] [Related]
7. Genomic response programs of Candida albicans following protoplasting and regeneration. Castillo L; Martínez AI; Garcerá A; García-Martínez J; Ruiz-Herrera J; Valentín E; Sentandreu R Fungal Genet Biol; 2006 Feb; 43(2):124-34. PubMed ID: 16455273 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway. Jones DL; Petty J; Hoyle DC; Hayes A; Ragni E; Popolo L; Oliver SG; Stateva LI Physiol Genomics; 2003 Dec; 16(1):107-18. PubMed ID: 14570984 [TBL] [Abstract][Full Text] [Related]
9. DNA array analysis of Candida albicans gene expression in response to adherence to polystyrene. Marchais V; Kempf M; Licznar P; Lefrançois C; Bouchara JP; Robert R; Cottin J FEMS Microbiol Lett; 2005 Apr; 245(1):25-32. PubMed ID: 15796975 [TBL] [Abstract][Full Text] [Related]
10. Anchorage of Candida albicans Ssr1 to the cell wall, and transcript profiling of the null mutant. Garcerá A; Castillo L; Martínez AI; Elorza MV; Valentín E; Sentandreu R Res Microbiol; 2005 Nov; 156(9):911-20. PubMed ID: 16024227 [TBL] [Abstract][Full Text] [Related]
11. Candida albicans HSP12 is co-regulated by physiological CO2 and pH. Sheth CC; Mogensen EG; Fu MS; Blomfield IC; Mühlschlegel FA Fungal Genet Biol; 2008 Jul; 45(7):1075-80. PubMed ID: 18487064 [TBL] [Abstract][Full Text] [Related]
12. Regulatory networks affected by iron availability in Candida albicans. Lan CY; Rodarte G; Murillo LA; Jones T; Davis RW; Dungan J; Newport G; Agabian N Mol Microbiol; 2004 Sep; 53(5):1451-69. PubMed ID: 15387822 [TBL] [Abstract][Full Text] [Related]
13. Roles of Zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic Yeast Candida albicans. Kim MJ; Kil M; Jung JH; Kim J J Microbiol Biotechnol; 2008 Feb; 18(2):242-7. PubMed ID: 18309267 [TBL] [Abstract][Full Text] [Related]
14. CRZ1, a target of the calcineurin pathway in Candida albicans. Karababa M; Valentino E; Pardini G; Coste AT; Bille J; Sanglard D Mol Microbiol; 2006 Mar; 59(5):1429-51. PubMed ID: 16468987 [TBL] [Abstract][Full Text] [Related]
15. Oxygen accessibility and iron levels are critical factors for the antifungal action of ciclopirox against Candida albicans. Sigle HC; Thewes S; Niewerth M; Korting HC; Schäfer-Korting M; Hube B J Antimicrob Chemother; 2005 May; 55(5):663-73. PubMed ID: 15790671 [TBL] [Abstract][Full Text] [Related]
16. Divergence of transcription factor binding sites across related yeast species. Borneman AR; Gianoulis TA; Zhang ZD; Yu H; Rozowsky J; Seringhaus MR; Wang LY; Gerstein M; Snyder M Science; 2007 Aug; 317(5839):815-9. PubMed ID: 17690298 [TBL] [Abstract][Full Text] [Related]
17. A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Reuss O; Morschhäuser J Mol Microbiol; 2006 May; 60(3):795-812. PubMed ID: 16629678 [TBL] [Abstract][Full Text] [Related]
18. The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans. Urban C; Xiong X; Sohn K; Schröppel K; Brunner H; Rupp S Mol Microbiol; 2005 Sep; 57(5):1318-41. PubMed ID: 16102003 [TBL] [Abstract][Full Text] [Related]
19. Repression of CDC28 reduces the expression of the morphology-related transcription factors, Efg1p, Nrg1p, Rbf1p, Rim101p, Fkh2p and Tec1p and induces cell elongation in Candida albicans. Umeyama T; Kaneko A; Niimi M; Uehara Y Yeast; 2006 May; 23(7):537-52. PubMed ID: 16710830 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide expression profiling of the response to terbinafine in Candida albicans using a cDNA microarray analysis. Zeng YB; Qian YS; Ma L; Gu HN Chin Med J (Engl); 2007 May; 120(9):807-13. PubMed ID: 17531123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]