These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 17238267)

  • 1. Contemporary QSAR classifiers compared.
    Bruce CL; Melville JL; Pickett SD; Hirst JD
    J Chem Inf Model; 2007; 47(1):219-27. PubMed ID: 17238267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of combinatorial clustering methods on pharmacological data sets represented by machine learning-selected real molecular descriptors.
    Rivera-Borroto OM; Marrero-Ponce Y; García-de la Vega JM; Grau-Ábalo Rdel C
    J Chem Inf Model; 2011 Dec; 51(12):3036-49. PubMed ID: 22098113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques.
    Vasanthanathan P; Taboureau O; Oostenbrink C; Vermeulen NP; Olsen L; Jørgensen FS
    Drug Metab Dispos; 2009 Mar; 37(3):658-64. PubMed ID: 19056915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression.
    Yao XJ; Panaye A; Doucet JP; Zhang RS; Chen HF; Liu MC; Hu ZD; Fan BT
    J Chem Inf Comput Sci; 2004; 44(4):1257-66. PubMed ID: 15272833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial QSAR modeling of P-glycoprotein substrates.
    de Cerqueira Lima P; Golbraikh A; Oloff S; Xiao Y; Tropsha A
    J Chem Inf Model; 2006; 46(3):1245-54. PubMed ID: 16711744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comments on "a parallel mixture of SVMs for very large scale problems".
    Liu X; Hall LO; Bowyer KW
    Neural Comput; 2004 Jul; 16(7):1345-51. PubMed ID: 15165393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting random subspace method.
    García-Pedrajas N; Ortiz-Boyer D
    Neural Netw; 2008 Nov; 21(9):1344-62. PubMed ID: 18272334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical instance-based pruning in ensembles of independent classifiers.
    Hernández-Lobato D; Martínez-Muñoz G; Suárez A
    IEEE Trans Pattern Anal Mach Intell; 2009 Feb; 31(2):364-9. PubMed ID: 19110500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of antibacterial compounds by machine learning approaches.
    Yang XG; Chen D; Wang M; Xue Y; Chen YZ
    J Comput Chem; 2009 Jun; 30(8):1202-11. PubMed ID: 18988254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds.
    Helma C; Cramer T; Kramer S; De Raedt L
    J Chem Inf Comput Sci; 2004; 44(4):1402-11. PubMed ID: 15272848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supervised self-organizing maps in drug discovery. 1. Robust behavior with overdetermined data sets.
    Xiao YD; Clauset A; Harris R; Bayram E; Santago P; Schmitt JD
    J Chem Inf Model; 2005; 45(6):1749-58. PubMed ID: 16309281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A decision support system to facilitate management of patients with acute gastrointestinal bleeding.
    Chu A; Ahn H; Halwan B; Kalmin B; Artifon EL; Barkun A; Lagoudakis MG; Kumar A
    Artif Intell Med; 2008 Mar; 42(3):247-59. PubMed ID: 18063351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretation of nonlinear QSAR models applied to Ames mutagenicity data.
    Carlsson L; Helgee EA; Boyer S
    J Chem Inf Model; 2009 Nov; 49(11):2551-8. PubMed ID: 19824682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaussian processes for classification: QSAR modeling of ADMET and target activity.
    Obrezanova O; Segall MD
    J Chem Inf Model; 2010 Jun; 50(6):1053-61. PubMed ID: 20433177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of genomewide conserved epitope profiles of HIV-1: classifier choice and peptide representation.
    Xiao Y; Segal MR
    Stat Appl Genet Mol Biol; 2005; 4():Article25. PubMed ID: 16646843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random forest: a classification and regression tool for compound classification and QSAR modeling.
    Svetnik V; Liaw A; Tong C; Culberson JC; Sheridan RP; Feuston BP
    J Chem Inf Comput Sci; 2003; 43(6):1947-58. PubMed ID: 14632445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting: an ensemble learning tool for compound classification and QSAR modeling.
    Svetnik V; Wang T; Tong C; Liaw A; Sheridan RP; Song Q
    J Chem Inf Model; 2005; 45(3):786-99. PubMed ID: 15921468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Support vector machine-based quantitative structure-activity relationship study of cholesteryl ester transfer protein inhibitors.
    Riahi S; Pourbasheer E; Ganjali MR; Norouzi P
    Chem Biol Drug Des; 2009 May; 73(5):558-71. PubMed ID: 19323654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting human liver microsomal stability with machine learning techniques.
    Sakiyama Y; Yuki H; Moriya T; Hattori K; Suzuki M; Shimada K; Honma T
    J Mol Graph Model; 2008 Feb; 26(6):907-15. PubMed ID: 17683964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.