BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 17238269)

  • 21. Application of machine learning techniques in predicting MHC binders.
    Lata S; Bhasin M; Raghava GP
    Methods Mol Biol; 2007; 409():201-15. PubMed ID: 18450002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural prediction of peptides bound to MHC class I.
    Fagerberg T; Cerottini JC; Michielin O
    J Mol Biol; 2006 Feb; 356(2):521-46. PubMed ID: 16368108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A T cell receptor flattens a bulged antigenic peptide presented by a major histocompatibility complex class I molecule.
    Tynan FE; Reid HH; Kjer-Nielsen L; Miles JJ; Wilce MC; Kostenko L; Borg NA; Williamson NA; Beddoe T; Purcell AW; Burrows SR; McCluskey J; Rossjohn J
    Nat Immunol; 2007 Mar; 8(3):268-76. PubMed ID: 17259989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure-based prediction of MHC-peptide association: algorithm comparison and application to cancer vaccine design.
    Schiewe AJ; Haworth IS
    J Mol Graph Model; 2007 Oct; 26(3):667-75. PubMed ID: 17493854
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discovery of promiscuous HLA-II-restricted T cell epitopes with TEPITOPE.
    Bian H; Hammer J
    Methods; 2004 Dec; 34(4):468-75. PubMed ID: 15542373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative structure-activity relationships and the prediction of MHC supermotifs.
    Doytchinova IA; Guan P; Flower DR
    Methods; 2004 Dec; 34(4):444-53. PubMed ID: 15542370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peptide length-based prediction of peptide-MHC class II binding.
    Chang ST; Ghosh D; Kirschner DE; Linderman JJ
    Bioinformatics; 2006 Nov; 22(22):2761-7. PubMed ID: 17000752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A combined prediction strategy increases identification of peptides bound with high affinity and stability to porcine MHC class I molecules SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01.
    Pedersen LE; Rasmussen M; Harndahl M; Nielsen M; Buus S; Jungersen G
    Immunogenetics; 2016 Feb; 68(2):157-65. PubMed ID: 26572135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of different generic in silico methods for predicting HLA class I binding peptide vaccine candidates using a reverse approach.
    Gowthaman U; Chodisetti SB; Parihar P; Agrewala JN
    Amino Acids; 2010 Nov; 39(5):1333-42. PubMed ID: 20379752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-canonical anchor motif peptides bound to MHC class I induce cellular responses.
    Lazoura E; Lodding J; Farrugia W; Day S; Ramsland PA; Apostolopoulos V
    Mol Immunol; 2009 Mar; 46(6):1171-8. PubMed ID: 19118903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Bayesian regression approach to the prediction of MHC-II binding affinity.
    Zhang W; Liu J; Niu YQ; Wang L; Hu X
    Comput Methods Programs Biomed; 2008 Oct; 92(1):1-7. PubMed ID: 18562039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational methods for prediction of T-cell epitopes--a framework for modelling, testing, and applications.
    Brusic V; Bajic VB; Petrovsky N
    Methods; 2004 Dec; 34(4):436-43. PubMed ID: 15542369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A structure-based approach for prediction of MHC-binding peptides.
    Altuvia Y; Margalit H
    Methods; 2004 Dec; 34(4):454-9. PubMed ID: 15542371
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial intelligence methods for predicting T-cell epitopes.
    Zhao Y; Sung MH; Simon R
    Methods Mol Biol; 2007; 409():217-25. PubMed ID: 18450003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A systematic approach for comprehensive T-cell epitope discovery using peptide libraries.
    Beissbarth T; Tye-Din JA; Smyth GK; Speed TP; Anderson RP
    Bioinformatics; 2005 Jun; 21 Suppl 1():i29-37. PubMed ID: 15961469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of CTL epitopes using QM, SVM and ANN techniques.
    Bhasin M; Raghava GP
    Vaccine; 2004 Aug; 22(23-24):3195-204. PubMed ID: 15297074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An in silico immunological approach for prediction of CD8+ T cell epitopes of Leishmania major proteins in susceptible BALB/c and resistant C57BL/6 murine models of infection.
    Guerfali FZ; Ben-Abdallah H; Sghaier RM; Ben-Aissa K; Mkannez G; Attia H; Laouini D
    Infect Genet Evol; 2009 May; 9(3):344-50. PubMed ID: 18420466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In silico quantitative prediction of peptides binding affinity to human MHC molecule: an intuitive quantitative structure-activity relationship approach.
    Tian F; Yang L; Lv F; Yang Q; Zhou P
    Amino Acids; 2009 Mar; 36(3):535-54. PubMed ID: 18575802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicted epitopes of malarial merozoite surface protein 1 by bioinformatics method: a clue for further vaccine development.
    Wiwanitkit V
    J Microbiol Immunol Infect; 2009 Feb; 42(1):19-21. PubMed ID: 19424554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Induction of EBV-latent membrane protein 1-specific MHC class II-restricted T-cell responses against natural killer lymphoma cells.
    Kobayashi H; Nagato T; Takahara M; Sato K; Kimura S; Aoki N; Azumi M; Tateno M; Harabuchi Y; Celis E
    Cancer Res; 2008 Feb; 68(3):901-8. PubMed ID: 18245493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.