These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 17238912)

  • 1. A model-based framework for the phenotypic characterization of the flowering of Medicago truncatula.
    Moreau D; Salon C; Munier-Jolain N
    Plant Cell Environ; 2007 Feb; 30(2):213-24. PubMed ID: 17238912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model analysis of flowering phenology in recombinant inbred lines of barley.
    Yin X; Struik PC; Tang J; Qi C; Liu T
    J Exp Bot; 2005 Mar; 56(413):959-65. PubMed ID: 15689339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula.
    Pierre JB; Huguet T; Barre P; Huyghe C; Julier B
    Theor Appl Genet; 2008 Aug; 117(4):609-20. PubMed ID: 18553068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The model symbiotic association between Medicago truncatula cv. Jemalong and Rhizobium meliloti strain 2011 leads to N-stressed plants when symbiotic N2 fixation is the main N source for plant growth.
    Moreau D; Voisin AS; Salon C; Munier-Jolain N
    J Exp Bot; 2008; 59(13):3509-22. PubMed ID: 18703494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary change in flowering phenology in the iteroparous herb Beta vulgaris ssp. maritima: a search for the underlying mechanisms.
    Van Dijk H
    J Exp Bot; 2009; 60(11):3143-55. PubMed ID: 19436046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic regions controlling vernalization and photoperiod responses in oat.
    Holland B; Portyanko A; Hoffman L; Lee M
    Theor Appl Genet; 2002 Jul; 105(1):113-126. PubMed ID: 12582569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Genomics and Flowering Time in Medicago truncatula: An Overview.
    Weller JL; Macknight RC
    Methods Mol Biol; 2018; 1822():261-271. PubMed ID: 30043309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retroelement insertions at the Medicago FTa1 locus in spring mutants eliminate vernalisation but not long-day requirements for early flowering.
    Jaudal M; Yeoh CC; Zhang L; Stockum C; Mysore KS; Ratet P; Putterill J
    Plant J; 2013 Nov; 76(4):580-91. PubMed ID: 23964816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular basis of vernalization-induced flowering in cereals.
    Trevaskis B; Hemming MN; Dennis ES; Peacock WJ
    Trends Plant Sci; 2007 Aug; 12(8):352-7. PubMed ID: 17629542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change and the flowering time of annual crops.
    Craufurd PQ; Wheeler TR
    J Exp Bot; 2009; 60(9):2529-39. PubMed ID: 19505929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using a standard framework for the phenotypic analysis of Medicago truncatula: an effective method for characterizing the plant material used for functional genomics approaches.
    Moreau D; Salon C; Munier-Jolain N
    Plant Cell Environ; 2006 Jun; 29(6):1087-98. PubMed ID: 17080935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discordant longitudinal clines in flowering time and phytochrome C in Arabidopsis thaliana.
    Samis KE; Heath KD; Stinchcombe JR
    Evolution; 2008 Dec; 62(12):2971-83. PubMed ID: 18752603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioclimatic requirements for olive flowering in two Mediterranean regions located at the same latitude (Andalucia, Spain and Sicily, Italy).
    Orlandi F; Vazquez LM; Ruga L; Bonofiglio T; Fornaciari M; Garcia-Mozo H; Domínguez E; Romano B; Galan C
    Ann Agric Environ Med; 2005; 12(1):47-52. PubMed ID: 16028866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TaVRT2 represses transcription of the wheat vernalization gene TaVRN1.
    Kane NA; Agharbaoui Z; Diallo AO; Adam H; Tominaga Y; Ouellet F; Sarhan F
    Plant J; 2007 Aug; 51(4):670-80. PubMed ID: 17587304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula.
    Benlloch R; Roque E; Ferrándiz C; Cosson V; Caballero T; Penmetsa RV; Beltrán JP; Cañas LA; Ratet P; Madueño F
    Plant J; 2009 Oct; 60(1):102-11. PubMed ID: 19500303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature.
    Strasser B; Alvarez MJ; Califano A; Cerdán PD
    Plant J; 2009 May; 58(4):629-40. PubMed ID: 19187043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative and molecular genetic variation in sympatric populations of Medicago laciniata and M. truncatula (Fabaceae): relationships with eco-geographical factors.
    Badri M; Ilahi H; Huguet T; Aouani ME
    Genet Res; 2007 Apr; 89(2):107-22. PubMed ID: 17669230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translating Medicago truncatula genomics to crop legumes.
    Young ND; Udvardi M
    Curr Opin Plant Biol; 2009 Apr; 12(2):193-201. PubMed ID: 19162532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic regulation of flowering.
    Dennis ES; Peacock WJ
    Curr Opin Plant Biol; 2007 Oct; 10(5):520-7. PubMed ID: 17709278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the interaction between the bacterial wilt pathogen Ralstonia solanacearum and the model legume plant Medicago truncatula.
    Vailleau F; Sartorel E; Jardinaud MF; Chardon F; Genin S; Huguet T; Gentzbittel L; Petitprez M
    Mol Plant Microbe Interact; 2007 Feb; 20(2):159-67. PubMed ID: 17313167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.