BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17239812)

  • 1. Identification of novel targets of cyanobacterial glutaredoxin.
    Li M; Yang Q; Zhang L; Li H; Cui Y; Wu Q
    Arch Biochem Biophys; 2007 Feb; 458(2):220-8. PubMed ID: 17239812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and oxidative stress tolerance studies of glutaredoxin from cyanobacterium Synechocystis sp. PCC 6803 in Escherichia coli.
    Li M; Huang W; Yang Q; Liu X; Wu Q
    Protein Expr Purif; 2005 Jul; 42(1):85-91. PubMed ID: 15882949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The thioredoxin reductase-glutaredoxins-ferredoxin crossroad pathway for selenate tolerance in Synechocystis PCC6803.
    Marteyn B; Domain F; Legrain P; Chauvat F; Cassier-Chauvat C
    Mol Microbiol; 2009 Jan; 71(2):520-32. PubMed ID: 19040637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binary reducing equivalent pathways using NADPH-thioredoxin reductase and ferredoxin-thioredoxin reductase in the cyanobacterium Synechocystis sp. strain PCC 6803.
    Hishiya S; Hatakeyama W; Mizota Y; Hosoya-Matsuda N; Motohashi K; Ikeuchi M; Hisabori T
    Plant Cell Physiol; 2008 Jan; 49(1):11-8. PubMed ID: 18003670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative splicing involving the thioredoxin reductase module in mammals: a glutaredoxin-containing thioredoxin reductase 1.
    Su D; Gladyshev VN
    Biochemistry; 2004 Sep; 43(38):12177-88. PubMed ID: 15379556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox and antioxidant systems of the malaria parasite Plasmodium falciparum.
    Müller S
    Mol Microbiol; 2004 Sep; 53(5):1291-305. PubMed ID: 15387810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR reveals a novel glutaredoxin-glutaredoxin interaction interface.
    Noguera V; Walker O; Rouhier N; Jacquot JP; Krimm I; Lancelin JM
    J Mol Biol; 2005 Oct; 353(3):629-41. PubMed ID: 16181638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel glutaredoxin domain-containing peroxiredoxin 'All1541' protects the N2-fixing cyanobacterium Anabaena PCC 7120 from oxidative stress.
    Banerjee M; Ballal A; Apte SK
    Biochem J; 2012 Mar; 442(3):671-80. PubMed ID: 22150556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A unique thioredoxin of the parasitic nematode Haemonchus contortus with glutaredoxin activity.
    Sotirchos IM; Hudson AL; Ellis J; Davey MW
    Free Radic Biol Med; 2009 Mar; 46(5):579-85. PubMed ID: 19111609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of plant glutaredoxin targets.
    Rouhier N; Villarejo A; Srivastava M; Gelhaye E; Keech O; Droux M; Finkemeier I; Samuelsson G; Dietz KJ; Jacquot JP; Wingsle G
    Antioxid Redox Signal; 2005; 7(7-8):919-29. PubMed ID: 15998247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutaredoxin mediates Akt and eNOS activation by flow in a glutathione reductase-dependent manner.
    Wang J; Pan S; Berk BC
    Arterioscler Thromb Vasc Biol; 2007 Jun; 27(6):1283-8. PubMed ID: 17431186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox regulation and flower development: a novel function for glutaredoxins.
    Xing S; Lauri A; Zachgo S
    Plant Biol (Stuttg); 2006 Sep; 8(5):547-55. PubMed ID: 16883479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thioredoxin induced antioxidant gene expressions in human lens epithelial cells.
    Yegorova S; Yegorov O; Lou MF
    Exp Eye Res; 2006 Oct; 83(4):783-92. PubMed ID: 16712839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical characterization of dithiol glutaredoxin 8 from Saccharomyces cerevisiae: the catalytic redox mechanism redux.
    Eckers E; Bien M; Stroobant V; Herrmann JM; Deponte M
    Biochemistry; 2009 Feb; 48(6):1410-23. PubMed ID: 19166312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The plant multigenic family of thiol peroxidases.
    Rouhier N; Jacquot JP
    Free Radic Biol Med; 2005 Jun; 38(11):1413-21. PubMed ID: 15890615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peroxiredoxins as cellular guardians in Sulfolobus solfataricus: characterization of Bcp1, Bcp3 and Bcp4.
    Limauro D; Pedone E; Galdi I; Bartolucci S
    FEBS J; 2008 May; 275(9):2067-77. PubMed ID: 18355320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paraquat-induced oxidative stress and dysfunction of cellular redox systems including antioxidative defense enzymes glutathione peroxidase and thioredoxin reductase.
    Takizawa M; Komori K; Tampo Y; Yonaha M
    Toxicol In Vitro; 2007 Apr; 21(3):355-63. PubMed ID: 17055214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An NADH-dependent bacterial thioredoxin reductase-like protein in conjunction with a glutaredoxin homologue form a unique peroxiredoxin (AhpC) reducing system in Clostridium pasteurianum.
    Reynolds CM; Meyer J; Poole LB
    Biochemistry; 2002 Feb; 41(6):1990-2001. PubMed ID: 11827546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial thioltransferase (glutaredoxin 2) has GSH-dependent and thioredoxin reductase-dependent peroxidase activities in vitro and in lens epithelial cells.
    Fernando MR; Lechner JM; Löfgren S; Gladyshev VN; Lou MF
    FASEB J; 2006 Dec; 20(14):2645-7. PubMed ID: 17065220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox modifications of protein-thiols: emerging roles in cell signaling.
    Biswas S; Chida AS; Rahman I
    Biochem Pharmacol; 2006 Feb; 71(5):551-64. PubMed ID: 16337153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.