These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 17239907)

  • 1. Sensorimotor memory for fingertip forces during object lifting: the role of the primary motor cortex.
    Berner J; Schönfeldt-Lecuona C; Nowak DA
    Neuropsychologia; 2007 Apr; 45(8):1931-8. PubMed ID: 17239907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-frequency repetitive transcranial magnetic stimulation over the hand area of the primary motor cortex disturbs predictive grip force scaling.
    Nowak DA; Voss M; Huang YZ; Wolpert DM; Rothwell JC
    Eur J Neurosci; 2005 Nov; 22(9):2392-6. PubMed ID: 16262679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the role of the ventral premotor cortex and anterior intraparietal area for predictive and reactive scaling of grip force.
    Dafotakis M; Sparing R; Eickhoff SB; Fink GR; Nowak DA
    Brain Res; 2008 Sep; 1228():73-80. PubMed ID: 18601912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limited persistence of the sensorimotor memory when transferred across prehension tasks.
    Parikh PJ; Cole KJ
    Neurosci Lett; 2011 Apr; 494(2):94-8. PubMed ID: 21371526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous theta-burst stimulation over the dorsal premotor cortex interferes with associative learning during object lifting.
    Nowak DA; Berner J; Herrnberger B; Kammer T; Grön G; Schönfeldt-Lecuona C
    Cortex; 2009 Apr; 45(4):473-82. PubMed ID: 18400218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermanual transfer of sensorimotor memory for grip force when lifting objects: the role of wrist angulation.
    Bensmail D; Sarfeld AS; Fink GR; Nowak DA
    Clin Neurophysiol; 2010 Mar; 121(3):402-7. PubMed ID: 20004612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the primary motor and sensory cortex in precision grasping: a transcranial magnetic stimulation study.
    Schabrun SM; Ridding MC; Miles TS
    Eur J Neurosci; 2008 Feb; 27(3):750-6. PubMed ID: 18279327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensorimotor memory for fingertip forces: evidence for a task-independent motor memory.
    Quaney BM; Rotella DL; Peterson C; Cole KJ
    J Neurosci; 2003 Mar; 23(5):1981-6. PubMed ID: 12629204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired generalization of weight-related information during grasping in cerebellar degeneration.
    Nowak DA; Hermsdörfer J; Timmann D; Rost K; Topka H
    Neuropsychologia; 2005; 43(1):20-7. PubMed ID: 15488901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Failure to disrupt the 'sensorimotor' memory for lifting objects with a precision grip.
    Cole KJ; Potash M; Peterson C
    Exp Brain Res; 2008 Jan; 184(2):157-63. PubMed ID: 17717654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Memory for fingertip forces: passive hand muscle vibration interferes with predictive grip force scaling.
    Nowak DA; Rosenkranz K; Hermsdörfer J; Rothwell J
    Exp Brain Res; 2004 Jun; 156(4):444-50. PubMed ID: 14722702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain activity during predictable and unpredictable weight changes when lifting objects.
    Schmitz C; Jenmalm P; Ehrsson HH; Forssberg H
    J Neurophysiol; 2005 Mar; 93(3):1498-509. PubMed ID: 15385599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force requirements of observed object lifting are encoded by the observer's motor system: a TMS study.
    Alaerts K; Senot P; Swinnen SP; Craighero L; Wenderoth N; Fadiga L
    Eur J Neurosci; 2010 Mar; 31(6):1144-53. PubMed ID: 20377627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive force programming in the grip-lift task: the role of memory links between arbitrary cues and object weight.
    Ameli M; Dafotakis M; Fink GR; Nowak DA
    Neuropsychologia; 2008; 46(9):2383-8. PubMed ID: 18455203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control strategies correcting inaccurately programmed fingertip forces: model predictions derived from human behavior.
    Fagergren A; Ekeberg O; Forssberg H
    J Neurophysiol; 2003 Jun; 89(6):2904-16. PubMed ID: 12783946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired grip force modulation in the ipsilesional hand after unilateral middle cerebral artery stroke.
    Quaney BM; Perera S; Maletsky R; Luchies CW; Nudo RJ
    Neurorehabil Neural Repair; 2005 Dec; 19(4):338-49. PubMed ID: 16263966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke.
    Ameli M; Grefkes C; Kemper F; Riegg FP; Rehme AK; Karbe H; Fink GR; Nowak DA
    Ann Neurol; 2009 Sep; 66(3):298-309. PubMed ID: 19798637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Object properties and cognitive load in the formation of associative memory during precision lifting.
    Li Y; Randerath J; Bauer H; Marquardt C; Goldenberg G; Hermsdörfer J
    Behav Brain Res; 2009 Jan; 196(1):123-30. PubMed ID: 18722479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensorimotor processing in the grip-lift task: the impact of maximum wrist flexion/extension on force scaling.
    Bensmail D; Sarfeld AS; Fink GR; Nowak DA
    Clin Neurophysiol; 2009 Aug; 120(8):1588-95. PubMed ID: 19577513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination of prehensile forces during precision grip in Huntington's disease.
    Gordon AM; Quinn L; Reilmann R; Marder K
    Exp Neurol; 2000 May; 163(1):136-48. PubMed ID: 10785452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.