These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
537 related articles for article (PubMed ID: 17239980)
1. Exploring the performance of logistic regression model types on growth/no growth data of Listeria monocytogenes. Gysemans KP; Bernaerts K; Vermeulen A; Geeraerd AH; Debevere J; Devlieghere F; Van Impe JF Int J Food Microbiol; 2007 Mar; 114(3):316-31. PubMed ID: 17239980 [TBL] [Abstract][Full Text] [Related]
2. Modelling the influence of the inoculation level on the growth/no growth interface of Listeria monocytogenes as a function of pH, aw and acetic acid. Vermeulen A; Gysemans KP; Bernaerts K; Geeraerd AH; Debevere J; Devlieghere F; Van Impe JF Int J Food Microbiol; 2009 Oct; 135(2):83-9. PubMed ID: 19732986 [TBL] [Abstract][Full Text] [Related]
3. Influence of pH, water activity and acetic acid concentration on Listeria monocytogenes at 7 degrees C: data collection for the development of a growth/no growth model. Vermeulen A; Gysemans KP; Bernaerts K; Geeraerd AH; Van Impe JF; Debevere J; Devlieghere F Int J Food Microbiol; 2007 Mar; 114(3):332-41. PubMed ID: 17184866 [TBL] [Abstract][Full Text] [Related]
4. Effect of environmental parameters (temperature, pH and a(w)) on the individual cell lag phase and generation time of Listeria monocytogenes. Francois K; Devlieghere F; Standaert AR; Geeraerd AH; Van Impe JF; Debevere J Int J Food Microbiol; 2006 May; 108(3):326-35. PubMed ID: 16488043 [TBL] [Abstract][Full Text] [Related]
5. Modelling the unexpected effect of acetic and lactic acid in combination with pH and aw on the growth/no growth interface of Zygosaccharomyces bailii. Vermeulen A; Dang TD; Geeraerd AH; Bernaerts K; Debevere J; Van Impe J; Devlieghere F Int J Food Microbiol; 2008 May; 124(1):79-90. PubMed ID: 18400324 [TBL] [Abstract][Full Text] [Related]
6. Product unit neural network models for predicting the growth limits of Listeria monocytogenes. Valero A; Hervás C; García-Gimeno RM; Zurera G Food Microbiol; 2007 Aug; 24(5):452-64. PubMed ID: 17367678 [TBL] [Abstract][Full Text] [Related]
7. Modelling the influence of single acid and mixture on bacterial growth. Coroller L; Guerrot V; Huchet V; Le Marc Y; Mafart P; Sohier D; Thuault D Int J Food Microbiol; 2005 Apr; 100(1-3):167-78. PubMed ID: 15854702 [TBL] [Abstract][Full Text] [Related]
8. Effect of pH, water activity and gel micro-structure, including oxygen profiles and rheological characterization, on the growth kinetics of Salmonella Typhimurium. Theys TE; Geeraerd AH; Verhulst A; Poot K; Van Bree I; Devlieghere F; Moldenaers P; Wilson D; Brocklehurst T; Van Impe JF Int J Food Microbiol; 2008 Nov; 128(1):67-77. PubMed ID: 18834641 [TBL] [Abstract][Full Text] [Related]
9. Analysis of a novel class of predictive microbial growth models and application to coculture growth. Poschet F; Vereecken KM; Geeraerd AH; Nicolaï BM; Van Impe JF Int J Food Microbiol; 2005 Apr; 100(1-3):107-24. PubMed ID: 15854697 [TBL] [Abstract][Full Text] [Related]
10. Effect of nisin on growth boundaries of Listeria monocytogenes Scott A, at various temperatures, pH and water activities. Boziaris IS; Nychas GJ Food Microbiol; 2006 Dec; 23(8):779-84. PubMed ID: 16943082 [TBL] [Abstract][Full Text] [Related]
11. Effect of inoculum size on the combined temperature, pH and aw limits for growth of Listeria monocytogenes. Koutsoumanis KP; Sofos JN Int J Food Microbiol; 2005 Sep; 104(1):83-91. PubMed ID: 16005535 [TBL] [Abstract][Full Text] [Related]
12. Comparison of primary predictive models to study the growth of Listeria monocytogenes at low temperatures in liquid cultures and selection of fastest growing ribotypes in meat and turkey product slurries. Pal A; Labuza TP; Diez-Gonzalez F Food Microbiol; 2008 May; 25(3):460-70. PubMed ID: 18355671 [TBL] [Abstract][Full Text] [Related]
13. Towards a novel class of predictive microbial growth models. Van Impe JF; Poschet F; Geeraerd AH; Vereecken KM Int J Food Microbiol; 2005 Apr; 100(1-3):97-105. PubMed ID: 15854696 [TBL] [Abstract][Full Text] [Related]
14. Inactivation model equations and their associated parameter values obtained under static acid stress conditions cannot be used directly for predicting inactivation under dynamic conditions. Janssen M; Verhulst A; Valdramidis V; Devlieghere F; Van Impe JF; Geeraerd AH Int J Food Microbiol; 2008 Nov; 128(1):136-45. PubMed ID: 18675486 [TBL] [Abstract][Full Text] [Related]
15. Effect of NaCl and KCl on fate and growth/no growth interfaces of Listeria monocytogenes Scott A at different pH and nisin concentrations. Boziaris IS; Skandamis PN; Anastasiadi M; Nychas GJ J Appl Microbiol; 2007 Mar; 102(3):796-805. PubMed ID: 17309630 [TBL] [Abstract][Full Text] [Related]
16. Effect of temperature, water-phase salt and phenolic contents on Listeria monocytogenes growth rates on cold-smoked salmon and evaluation of secondary models. Cornu M; Beaufort A; Rudelle S; Laloux L; Bergis H; Miconnet N; Serot T; Delignette-Muller ML Int J Food Microbiol; 2006 Feb; 106(2):159-68. PubMed ID: 16216370 [TBL] [Abstract][Full Text] [Related]
17. Modelling thermal inactivation of Listeria monocytogenes in sucrose solutions of various water activities. Fernández A; López M; Bernardo A; Condón S; Raso J Food Microbiol; 2007 Jun; 24(4):372-9. PubMed ID: 17189763 [TBL] [Abstract][Full Text] [Related]
18. Growth/no growth models describing the influence of pH, lactic and acetic acid on lactic acid bacteria developed to determine the stability of acidified sauces. Vermeulen A; Devlieghere F; Bernaerts K; Van Impe J; Debevere J Int J Food Microbiol; 2007 Nov; 119(3):258-69. PubMed ID: 17868939 [TBL] [Abstract][Full Text] [Related]
19. Study of the effect of lethal and sublethal pH and a(w) stresses on the inactivation or growth of Listeria monocytogenes and Salmonella Typhimurium. Tiganitas A; Zeaki N; Gounadaki AS; Drosinos EH; Skandamis PN Int J Food Microbiol; 2009 Aug; 134(1-2):104-12. PubMed ID: 19356819 [TBL] [Abstract][Full Text] [Related]
20. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing. Doona CJ; Feeherry FE; Ross EW Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]