BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 17240053)

  • 21. Phosphate regulates uranium(VI) toxicity to Lemna gibba L. G3.
    Mkandawire M; Vogel K; Taubert B; Dudel EG
    Environ Toxicol; 2007 Feb; 22(1):9-16. PubMed ID: 17295276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytotoxic effects of cyanobacteria extract on the aquatic plant Lemna gibba: microcystin accumulation, detoxication and oxidative stress induction.
    Saqrane S; Ghazali IE; Ouahid Y; Hassni ME; Hadrami IE; Bouarab L; del Campo FF; Oudra B; Vasconcelos V
    Aquat Toxicol; 2007 Aug; 83(4):284-94. PubMed ID: 17582520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental contamination of chrysotile asbestos and its toxic effects on growth and physiological and biochemical parameters of Lemna gibba.
    Trivedi AK; Ahmad I; Musthapa MS; Ansari FA; Rahman Q
    Arch Environ Contam Toxicol; 2004 Oct; 47(3):281-9. PubMed ID: 15386121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of salt stress on the expression of NHX-type ion transporters in Medicago intertexta and Melilotus indicus plants.
    Zahran HH; Marín-Manzano MC; Sánchez-Raya AJ; Bedmar EJ; Venema K; Rodríguez-Rosales MP
    Physiol Plant; 2007 Sep; 131(1):122-30. PubMed ID: 18251930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contribution of floating macrophytes (Lemna sp.) to pond modelization.
    Jupsin H; Richard H; Vasel JL
    Water Sci Technol; 2005; 51(12):283-9. PubMed ID: 16114696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Duckweed (Lemna gibba) growth inhibition bioassay for evaluating the toxicity of olive mill wastes before and during composting.
    Cayuela ML; Millner P; Slovin J; Roig A
    Chemosphere; 2007 Aug; 68(10):1985-91. PubMed ID: 17448522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 2,4,6-Trichlorophenol mediated increases in extracellular peroxidase activity in three species of Lemnaceae.
    Biswas DK; Scannell G; Akhmetov N; Fitzpatrick D; Jansen MA
    Aquat Toxicol; 2010 Nov; 100(3):289-94. PubMed ID: 20810175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a kinetic model for the removal of zinc using the aquatic macrophyte, Lemna gibba L.
    Khellaf N; Zerdaoui M
    Water Sci Technol; 2012; 66(5):953-7. PubMed ID: 22797221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cadmium accumulation by muskmelon under salt stress in contaminated organic soil.
    Ondrasek G; Romic D; Rengel Z; Romic M; Zovko M
    Sci Total Environ; 2009 Mar; 407(7):2175-82. PubMed ID: 19162301
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.
    Bhattarai SP; Midmore DJ
    J Integr Plant Biol; 2009 Jul; 51(7):675-88. PubMed ID: 19566646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance.
    Lv S; Zhang K; Gao Q; Lian L; Song Y; Zhang J
    Plant Cell Physiol; 2008 Aug; 49(8):1150-64. PubMed ID: 18550626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor.
    Pomati F; Netting AG; Calamari D; Neilan BA
    Aquat Toxicol; 2004 May; 67(4):387-96. PubMed ID: 15084414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactive effects of salinity and iron deficiency in Medicago ciliaris.
    Rabhi M; Barhoumi Z; Ksouri R; Abdelly C; Gharsalli M
    C R Biol; 2007 Nov; 330(11):779-88. PubMed ID: 17923371
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [In vitro culture: a simple and efficient way for salt-tolerant grapevine genotype selection].
    Hamrouni L; Abdallah FB; Abdelly C; Ghorbel A
    C R Biol; 2008 Feb; 331(2):152-63. PubMed ID: 18241808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Salinity effect on germination, growth, and grain production of some autochthonous pear millet ecotypes (Pennisetum glaucum (L.) R. Br.)].
    Radhouane L
    C R Biol; 2008 Apr; 331(4):278-86. PubMed ID: 18355750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toxic effects of nickel oxide bulk and nanoparticles on the aquatic plant Lemna gibba L.
    Oukarroum A; Barhoumi L; Samadani M; Dewez D
    Biomed Res Int; 2015; 2015():501326. PubMed ID: 26075242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Competition between Free-Floating Plants Is Strongly Driven by Previously Experienced Phosphorus Concentrations in the Water Column.
    Peeters ET; Neefjes RE; Zuidam BG
    PLoS One; 2016; 11(9):e0162780. PubMed ID: 27622519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress.
    Ben Hassine A; Ghanem ME; Bouzid S; Lutts S
    J Exp Bot; 2008; 59(6):1315-26. PubMed ID: 18385490
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, and plasma membrane H+-ATPase, in relation to water and nutrient uptake.
    Martinez-Ballesta Mdel C; Bastías E; Zhu C; Schäffner AR; González-Moro B; González-Murua C; Carvajal M
    Physiol Plant; 2008 Apr; 132(4):479-90. PubMed ID: 18334001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance of Lemna gibba bioreactor for nitrogen and phosphorus retention, and biomass production in Mediterranean climate.
    Ennabili A; Ezzahri J; Radoux M
    J Environ Manage; 2019 Dec; 252():109627. PubMed ID: 31586747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.