These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 17240390)

  • 21. RNA-poly(o-methoxyaniline) hybrid templated growth of silver nanoparticles and nanojacketing: physical and electronic properties.
    Routh P; Mukherjee P; Nandi AK
    Langmuir; 2010 Apr; 26(7):5093-100. PubMed ID: 20020756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli.
    Gurunathan S; Kalishwaralal K; Vaidyanathan R; Venkataraman D; Pandian SR; Muniyandi J; Hariharan N; Eom SH
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):328-35. PubMed ID: 19716685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2.
    Tsuji M; Gomi S; Maeda Y; Matsunaga M; Hikino S; Uto K; Tsuji T; Kawazumi H
    Langmuir; 2012 Jun; 28(24):8845-61. PubMed ID: 22506506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles.
    Jung R; Kim Y; Kim HS; Jin HJ
    J Biomater Sci Polym Ed; 2009; 20(3):311-24. PubMed ID: 19192358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study.
    Ho CM; Yau SK; Lok CN; So MH; Che CM
    Chem Asian J; 2010 Feb; 5(2):285-93. PubMed ID: 20063340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ion release kinetics and particle persistence in aqueous nano-silver colloids.
    Liu J; Hurt RH
    Environ Sci Technol; 2010 Mar; 44(6):2169-75. PubMed ID: 20175529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-pot synthesis of triangular Ag nanoplates with tunable edge length.
    Zhang Y; Yang P; Zhang L
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8494-501. PubMed ID: 23421236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of saline-stable, silica-coated triangular silver nanoplates of use for optical sensing.
    Brandon MP; Ledwith DM; Kelly JM
    J Colloid Interface Sci; 2014 Feb; 415():77-84. PubMed ID: 24267332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective.
    Jain N; Bhargava A; Majumdar S; Tarafdar JC; Panwar J
    Nanoscale; 2011 Feb; 3(2):635-41. PubMed ID: 21088776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconstruction of silver nanoplates by UV irradiation: tailored optical properties and enhanced stability.
    Zhang Q; Ge J; Pham T; Goebl J; Hu Y; Lu Z; Yin Y
    Angew Chem Int Ed Engl; 2009; 48(19):3516-9. PubMed ID: 19347914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile synthesis of concave gold nanoplates in hexagonal liquid crystal made of SDS/water system.
    Wang L; Wu X; Li X; Wang L; Pei M; Tao X
    Chem Commun (Camb); 2010 Nov; 46(44):8422-3. PubMed ID: 20936246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology.
    Guo S; Dong S; Wang E
    Chemistry; 2008; 14(15):4689-95. PubMed ID: 18384027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and characterization of silver-nanoparticle-impregnated fiberglass and utility in water disinfection.
    Nangmenyi G; Yue Z; Mehrabi S; Mintz E; Economy J
    Nanotechnology; 2009 Dec; 20(49):495705. PubMed ID: 19904023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and study of polyacryamide-stabilized silver nanoparticles through a one-pot process.
    Chen M; Wang LY; Han JT; Zhang JY; Li ZY; Qian DJ
    J Phys Chem B; 2006 Jun; 110(23):11224-31. PubMed ID: 16771388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using Morganella psychrotolerans.
    Ramanathan R; O'Mullane AP; Parikh RY; Smooker PM; Bhargava SK; Bansal V
    Langmuir; 2011 Jan; 27(2):714-9. PubMed ID: 21142094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A direct comparison of nanosilver particles and nanosilver plates for the oxidation of ascorbic acid.
    Sadeghi B; Meskinfam M
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():326-8. PubMed ID: 22785122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simple synthesis and size-dependent surface-enhanced Raman scattering of Ag nanostructures on TiO2 by thermal decomposition of silver nitrate at low temperature.
    Wang RC; Gao YS; Chen SJ
    Nanotechnology; 2009 Sep; 20(37):375605. PubMed ID: 19706939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface plasmon modes of gold nanospheres, nanorods, and nanoplates in an organic solvent: phase-transfer from aqueous to organic media.
    Baik HJ; Hong S; Park S
    J Colloid Interface Sci; 2011 Jun; 358(2):317-22. PubMed ID: 21470619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of a SERS substrate and its sample-loading method for point-of-use application.
    Fang C; Agarwal A; Ji H; Karen WY; Yobas L
    Nanotechnology; 2009 Oct; 20(40):405604. PubMed ID: 19738294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling the shapes of silver nanocrystals with different capping agents.
    Zeng J; Zheng Y; Rycenga M; Tao J; Li ZY; Zhang Q; Zhu Y; Xia Y
    J Am Chem Soc; 2010 Jun; 132(25):8552-3. PubMed ID: 20527784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.