BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 17240524)

  • 1. Comparison of models of simazine transport and fate in the subsurface environment in a citrus farm.
    Chang NB; Srilakshmi KR; Parvathinathan G
    J Environ Manage; 2008 Jan; 86(1):27-43. PubMed ID: 17240524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of multispectral remote sensing, variable rate technology and environmental modeling for citrus pest management.
    Du Q; Chang NB; Yang C; Srilakshmi KR
    J Environ Manage; 2008 Jan; 86(1):14-26. PubMed ID: 17222960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of simazine in unsaturated sandy soil and predictions of its leaching under hypothetical field conditions.
    Suárez F; Bachmann J; Muñoz JF; Ortiz C; Tyler SW; Alister C; Kogan M
    J Contam Hydrol; 2007 Dec; 94(3-4):166-77. PubMed ID: 17604874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated modeling environment for statewide assessment of groundwater vulnerability from pesticide use in agriculture.
    Eason A; Tim US; Wang X
    Pest Manag Sci; 2004 Aug; 60(8):739-45. PubMed ID: 15307665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simazine transport in undisturbed soils from a vineyard at the Casablanca valley, Chile.
    Suárez F; Guzmán E; Muñoz JF; Bachmann J; Ortiz C; Alister C; Kogan M
    J Environ Manage; 2013 Mar; 117():32-41. PubMed ID: 23339800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model for simulating the effects of management practices on pesticide concentrations in groundwater.
    Dean JD; Voss KA; al-Hassan S
    Schriftenr Ver Wasser Boden Lufthyg; 1989; 79():527-80; discussion 581-6. PubMed ID: 2756386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a GIS-AF/RF model to assess the risk of herbicide leaching in a citrus-growing area of the Valencia Community, Spain.
    de Paz JM; Rubio JL
    Sci Total Environ; 2006 Dec; 371(1-3):44-54. PubMed ID: 16930681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption studies of the herbicide simazine in agricultural soils of the Aconcagua valley, central Chile.
    Flores C; Morgante V; González M; Navia R; Seeger M
    Chemosphere; 2009 Mar; 74(11):1544-9. PubMed ID: 19101008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncalibrated modelling of conservative tracer and pesticide leaching to groundwater: comparison of potential Tier II exposure assessment models.
    Fox GA; Sabbagh GJ; Chen W; Russell MH
    Pest Manag Sci; 2006 Jun; 62(6):537-50. PubMed ID: 16625679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Norflurazon and simazine losses in surface runoff water from flatwoods citrus production areas.
    Wilson PC; Boman B; Foos JF
    Bull Environ Contam Toxicol; 2007 May; 78(5):341-4. PubMed ID: 17618380
    [No Abstract]   [Full Text] [Related]  

  • 12. Parameterisation, evaluation and comparison of pesticide leaching models to data from a Bologna field site, Italy.
    Garratt JA; Capri E; Trevisan M; Errera G; Wilkins RM
    Pest Manag Sci; 2003 Jan; 59(1):3-20. PubMed ID: 12558095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pesticide module of the Root Zone Water Quality Model (RZWQM): testing and sensitivity analysis of selected algorithms for pesticide fate and surface runoff.
    Ma Q; Wauchope RD; Rojas KW; Ahuja LR; Ma L; Malone RW
    Pest Manag Sci; 2004 Mar; 60(3):240-52. PubMed ID: 15025236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Movement of simazine in runoff water and weed control from citrus orchard as affected by reduced rate of herbicide application.
    Liu F; O'Connell N
    Bioresour Technol; 2003 Feb; 86(3):253-8. PubMed ID: 12688468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an analytical scheme for simazine and 2,4-D in soil and water runoff from ornamental plant nursery plots.
    Sutherland DJ; Stearman GK; Wells MJ
    J Agric Food Chem; 2003 Jan; 51(1):14-20. PubMed ID: 12502379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simazine dynamics in a vineyard soil at Casablanca valley, Chile.
    Alister C; Lopez R; Kogan M
    Pest Manag Sci; 2005 Nov; 61(11):1083-8. PubMed ID: 15977310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simazine runoff from citrus orchards affected by shallow mechanical incorporation.
    Liu F; O'Connell NV
    J Environ Qual; 2003; 32(1):78-83. PubMed ID: 12549545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the impact of various agricultural practices on nitrate leaching under the root zone of potato and sugar beet using the STICS soil-crop model.
    Jégo G; Martínez M; Antigüedad I; Launay M; Sanchez-Pérez JM; Justes E
    Sci Total Environ; 2008 May; 394(2-3):207-21. PubMed ID: 18328537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sugar cane mechanical harvesting followed by no-tillage crop systems on leaching of triazine herbicides in Brazil.
    Cerdeira AL; Dornelas-DeSouza M; Bolonhezi D; Queiroz SC; Ferracini VL; Ligo MA; Pessoa MC; Smith S
    Bull Environ Contam Toxicol; 2005 Oct; 75(4):805-12. PubMed ID: 16400564
    [No Abstract]   [Full Text] [Related]  

  • 20. Mobility and half-life of bensulide in agricultural soil.
    Antonious GF
    J Environ Sci Health B; 2010 Jan; 45(1):1-10. PubMed ID: 20390925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.