BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1724070)

  • 1. Acute effects of tetrahydroaminoacridine on beta-adrenoceptor-linked cyclic AMP accumulation in brain of young and middle-aged rats.
    Dierssen M; Màrmol F; Vivas NM; Clos MV; Gascón S; Badia A
    Neurosci Lett; 1991 Oct; 132(1):51-4. PubMed ID: 1724070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-train administration of 9-amino-1,2,3,4-tetrahydroacridine enhances passive avoidance retention and decreases beta-adrenoceptor-linked cyclic AMP formation in middle-aged rats.
    Dierssen M; Màrmol F; Vivas NM; Clos MV; Badia A
    Brain Res; 1992 Jul; 586(1):117-20. PubMed ID: 1380875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of physostigmine and 1,2,3,4-tetrahydro-9-aminoacridine on the beta-adrenoceptor transduction system.
    Vivas NM; Badia A; Màrmol F; Dierssen M
    Eur J Pharmacol; 1993 Mar; 245(1):9-13. PubMed ID: 8386672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postnatal handling induces long-term modifications in central beta-noradrenergic signalling in rats.
    Baamonde C; Lumbreras MA; MartInez-Cué C; Vallina IF; Flórez J; Dierssen M
    Stress; 2002 Jun; 5(2):137-47. PubMed ID: 12186692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of cyclic AMP accumulation by alpha 2-adrenoceptors in the rat cerebral cortex.
    Kuno N; Kamisaki Y; Itoh T
    Eur J Pharmacol; 1990 Feb; 176(3):281-7. PubMed ID: 1970302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action on noradrenergic transmission of an anticholinesterase: 9-amino-1,2,3,4-tetrahydroacridine.
    Vivas NM; Màrmol F; Sallés J; Badia A; Dierssen M
    Neuropharmacology; 1995 Apr; 34(4):367-75. PubMed ID: 7566467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prenatal and early postnatal beta-adrenergic receptor-mediated increase of cyclic AMP in slices of rat brain.
    Walton KG; Miller E; Baldessarini RJ
    Brain Res; 1979 Nov; 177(3):515-22. PubMed ID: 91411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beta-adrenergic receptor mechanisms in rat parotid glands: activation by nerve stimulation and 3-isobutyl-1-methylxanthine.
    Fuller CM; Gallacher DV
    J Physiol; 1984 Nov; 356():335-48. PubMed ID: 6084058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations of central noradrenergic transmission in Ts65Dn mouse, a model for Down syndrome.
    Dierssen M; Vallina IF; Baamonde C; García-Calatayud S; Lumbreras MA; Flórez J
    Brain Res; 1997 Feb; 749(2):238-44. PubMed ID: 9138724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of prenalterol on beta adrenergic responsiveness and receptors in the cerebral cortex of the rat.
    Ordway GA; Frazer A
    Neuropharmacology; 1988 May; 27(5):529-36. PubMed ID: 2839793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic AMP accumulation in rat soleus muscle: stimulation by beta2- but not beta3-adrenoceptors.
    Roberts SJ; Summers RJ
    Eur J Pharmacol; 1998 May; 348(1):53-60. PubMed ID: 9650831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of selective phosphodiesterase inhibition on cyclic AMP hydrolysis in rat cerebral cortical slices.
    Challiss RA; Nicholson CD
    Br J Pharmacol; 1990 Jan; 99(1):47-52. PubMed ID: 2158837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of muscarinic receptor-induced inositol phospholipid hydrolysis by caffeine, beta-adrenoceptors and protein kinase C in intestinal smooth muscle.
    Prestwich SA; Bolton TB
    Br J Pharmacol; 1995 Feb; 114(3):602-11. PubMed ID: 7537591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo evidence that nonneuronal beta-adrenoceptors as well as dopamine receptors contribute to cyclic AMP efflux in rat striatum.
    Suyama K; Dykstra KH; Masana MI; Manji HK; Potter WZ
    J Neurochem; 1994 May; 62(5):1734-40. PubMed ID: 8158123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased beta-adrenoceptor-mediated vasodilation in aorta from aged rats: possible involvement of a stimulatory GTP-binding protein.
    Kazanietz MG; Enero MA
    Eur J Pharmacol; 1991 Jun; 198(2-3):177-81. PubMed ID: 1713850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium dependence of beta-adrenoceptor mediated cyclic AMP accumulation in human lymphocytes.
    Borst S; Conolly M
    Life Sci; 1988; 43(13):1021-9. PubMed ID: 2459578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blockade of isoproterenol-induced synaptic potentiation by tetra-9-aminoacridine in the rat amygdala.
    Wang SJ; Huang CC; Hsu KS; Tsai JJ; Huang CC; Gean PW
    Neurosci Lett; 1996 Aug; 214(2-3):87-90. PubMed ID: 8878090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of clonidine with pre- and post-synaptic adrenergic receptors of rat brain: effects on cyclic AMP-generating systems.
    Skolnick P; Daly JW
    Eur J Pharmacol; 1976 Sep; 39(1):11-21. PubMed ID: 183964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Striatal dopamine release in vitro: a beta-adrenoceptor-regulated response not mediated through cyclic AMP.
    Reisine T; Chesselet MF; Glowinski J
    J Neurochem; 1982 Oct; 39(4):976-81. PubMed ID: 6181195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term effects of postnatal manipulation on central beta-adrenoceptor transmission.
    Baamonde C; Lumbreras MA; Martínez-Cué C; Vallina IF; García-Calatayud S; Flórez J; Dierssen M
    Stress; 1999 Dec; 3(2):147-62. PubMed ID: 10938576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.