These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 17240718)

  • 1. Comparison of a brain-based adaptive system and a manual adaptable system for invoking automation.
    Bailey NR; Scerbo MW; Freeman FG; Mikulka PJ; Scott LA
    Hum Factors; 2006; 48(4):693-709. PubMed ID: 17240718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of a psychophysiological system for adaptive automation on performance, workload, and the event-related potential P300 component.
    Prinzel LJ; Freeman FG; Scerbo MW; Mikulka PJ; Pope AT
    Hum Factors; 2003 winter; 45(4):601-13. PubMed ID: 15055457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of adaptive task allocation on monitoring of automated systems.
    Parasuraman R; Mouloua M; Molloy R
    Hum Factors; 1996 Dec; 38(4):665-79. PubMed ID: 11536753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing for flexible interaction between humans and automation: delegation interfaces for supervisory control.
    Miller CA; Parasuraman R
    Hum Factors; 2007 Feb; 49(1):57-75. PubMed ID: 17315844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance, workload, and fatigue changes associated with automation.
    Harris WC; Hancock PA; Arthur EJ; Caird JK
    Int J Aviat Psychol; 1995; 5(2):169-85. PubMed ID: 11540255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Level of automation effects on performance, situation awareness and workload in a dynamic control task.
    Endsley MR; Kaber DB
    Ergonomics; 1999 Mar; 42(3):462-92. PubMed ID: 10048306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors affecting performance on a target monitoring task employing an automatic tracker.
    McFadden SM; Vimalachandran A; Blackmore E
    Ergonomics; 2004 Feb; 47(3):257-80. PubMed ID: 14668161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing the balance between task automation and human manual control in simulated submarine track management.
    Chen SI; Visser TAW; Huf S; Loft S
    J Exp Psychol Appl; 2017 Sep; 23(3):240-262. PubMed ID: 28604012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive automation of human-machine system information-processing functions.
    Kaber DB; Wright MC; Prinzel LJ; Clamann MP
    Hum Factors; 2005; 47(4):730-41. PubMed ID: 16553062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Benefits and Costs of Low and High Degree of Automation.
    Tatasciore M; Bowden VK; Visser TAW; Michailovs SIC; Loft S
    Hum Factors; 2020 Sep; 62(6):874-896. PubMed ID: 31424968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptable (Not Adaptive) Automation: Forefront of Human-Automation Teaming.
    Calhoun G
    Hum Factors; 2022 Mar; 64(2):269-277. PubMed ID: 34435537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding.
    Wilson GF; Russell CA
    Hum Factors; 2007 Dec; 49(6):1005-18. PubMed ID: 18074700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coadaptive aiding and automation enhance operator performance.
    Christensen JC; Estepp JR
    Hum Factors; 2013 Oct; 55(5):965-75. PubMed ID: 24218905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of adaptive and adaptable automation under different levels of environmental stress.
    Sauer J; Kao CS; Wastell D
    Ergonomics; 2012; 55(8):840-53. PubMed ID: 22506767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human-automation interaction for multiple robot control: the effect of varying automation assistance and individual differences on operator performance.
    Wright JL; Chen JYC; Barnes MJ
    Ergonomics; 2018 Aug; 61(8):1033-1045. PubMed ID: 29451105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Operator adaptation to changes in system reliability under adaptable automation.
    Chavaillaz A; Sauer J
    Ergonomics; 2017 Sep; 60(9):1261-1272. PubMed ID: 27875937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of extended lay-off periods on performance and operator trust under adaptable automation.
    Chavaillaz A; Wastell D; Sauer J
    Appl Ergon; 2016 Mar; 53 Pt A():241-51. PubMed ID: 26603139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Should We Just Let the Machines Do It? The Benefit and Cost of Action Recommendation and Action Implementation Automation.
    Tatasciore M; Bowden VK; Visser TAW; Loft S
    Hum Factors; 2022 Nov; 64(7):1121-1136. PubMed ID: 33555966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of automated decision aids on performance, operator behaviour and workload in a simulated supervisory control task.
    Röttger S; Bali K; Manzey D
    Ergonomics; 2009 May; 52(5):512-23. PubMed ID: 19296323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automation in future air traffic management: effects of decision aid reliability on controller performance and mental workload.
    Metzger U; Parasuraman R
    Hum Factors; 2005; 47(1):35-49. PubMed ID: 15960085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.