These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 17240982)
1. Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle. Lobo DS; Pereira IB; Fragel-Madeira L; Medeiros LN; Cabral LM; Faria J; Bellio M; Campos RC; Linden R; Kurtenbach E Biochemistry; 2007 Jan; 46(4):987-96. PubMed ID: 17240982 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the membrane lipid selectivity of the pea defensin Psd1. Gonçalves S; Teixeira A; Abade J; de Medeiros LN; Kurtenbach E; Santos NC Biochim Biophys Acta; 2012 May; 1818(5):1420-6. PubMed ID: 22373959 [TBL] [Abstract][Full Text] [Related]
3. Production of the active antifungal Pisum sativum defensin 1 (Psd1) in Pichia pastoris: overcoming the inefficiency of the STE13 protease. Cabral KM; Almeida MS; Valente AP; Almeida FC; Kurtenbach E Protein Expr Purif; 2003 Sep; 31(1):115-22. PubMed ID: 12963348 [TBL] [Abstract][Full Text] [Related]
4. Amaral VSGD; Santos SACS; de Andrade PC; Nowatzki J; Júnior NS; de Medeiros LN; Gitirana LB; Pascutti PG; Almeida VH; Monteiro RQ; Kurtenbach E Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32290394 [No Abstract] [Full Text] [Related]
5. Neutral glycolipids of the filamentous fungus Neurospora crassa: altered expression in plant defensin-resistant mutants. Park C; Bennion B; François IE; Ferket KK; Cammue BP; Thevissen K; Levery SB J Lipid Res; 2005 Apr; 46(4):759-68. PubMed ID: 15654124 [TBL] [Abstract][Full Text] [Related]
6. Psd1 binding affinity toward fungal membrane components as assessed by SPR: The role of glucosylceramide in fungal recognition and entry. de Medeiros LN; Domitrovic T; de Andrade PC; Faria J; Bergter EB; Weissmüller G; Kurtenbach E Biopolymers; 2014 Nov; 102(6):456-64. PubMed ID: 25283273 [TBL] [Abstract][Full Text] [Related]
7. Specific binding sites for an antifungal plant defensin from Dahlia (Dahlia merckii) on fungal cells are required for antifungal activity. Thevissen K; Osborn RW; Acland DP; Broekaert WF Mol Plant Microbe Interact; 2000 Jan; 13(1):54-61. PubMed ID: 10656585 [TBL] [Abstract][Full Text] [Related]
8. Backbone dynamics of the antifungal Psd1 pea defensin and its correlation with membrane interaction by NMR spectroscopy. de Medeiros LN; Angeli R; Sarzedas CG; Barreto-Bergter E; Valente AP; Kurtenbach E; Almeida FC Biochim Biophys Acta; 2010 Feb; 1798(2):105-13. PubMed ID: 19632194 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of Neurospora crassa mutants resistant to antifungal plant defensins. Ferket KK; Levery SB; Park C; Cammue BP; Thevissen K Fungal Genet Biol; 2003 Nov; 40(2):176-85. PubMed ID: 14516770 [TBL] [Abstract][Full Text] [Related]
10. Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Thevissen K; Terras FR; Broekaert WF Appl Environ Microbiol; 1999 Dec; 65(12):5451-8. PubMed ID: 10584003 [TBL] [Abstract][Full Text] [Related]
11. Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes. Thevissen K; Osborn RW; Acland DP; Broekaert WF J Biol Chem; 1997 Dec; 272(51):32176-81. PubMed ID: 9405418 [TBL] [Abstract][Full Text] [Related]
12. Antifungal mechanisms of a plant defensin MtDef4 are not conserved between the ascomycete fungi Neurospora crassa and Fusarium graminearum. El-Mounadi K; Islam KT; Hernández-Ortiz P; Read ND; Shah DM Mol Microbiol; 2016 May; 100(3):542-59. PubMed ID: 26801962 [TBL] [Abstract][Full Text] [Related]
13. cDNA cloning and heterologous expression of functional cysteine-rich antifungal protein Psd1 in the yeast Pichia pastoris. Almeida MS; Cabral KS; de Medeiros LN; Valente AP; Almeida FC; Kurtenbach E Arch Biochem Biophys; 2001 Nov; 395(2):199-207. PubMed ID: 11697857 [TBL] [Abstract][Full Text] [Related]
14. Solution structure of Pisum sativum defensin 1 by high resolution NMR: plant defensins, identical backbone with different mechanisms of action. Almeida MS; Cabral KM; Kurtenbach E; Almeida FC; Valente AP J Mol Biol; 2002 Jan; 315(4):749-57. PubMed ID: 11812144 [TBL] [Abstract][Full Text] [Related]
15. Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Spelbrink RG; Dilmac N; Allen A; Smith TJ; Shah DM; Hockerman GH Plant Physiol; 2004 Aug; 135(4):2055-67. PubMed ID: 15299136 [TBL] [Abstract][Full Text] [Related]
16. Defensins from insects and plants interact with fungal glucosylceramides. Thevissen K; Warnecke DC; François IE; Leipelt M; Heinz E; Ott C; Zähringer U; Thomma BP; Ferket KK; Cammue BP J Biol Chem; 2004 Feb; 279(6):3900-5. PubMed ID: 14604982 [TBL] [Abstract][Full Text] [Related]
17. Interactions of antifungal plant defensins with fungal membrane components. Thevissen K; Ferket KK; François IE; Cammue BP Peptides; 2003 Nov; 24(11):1705-12. PubMed ID: 15019201 [TBL] [Abstract][Full Text] [Related]
18. Specific domains of plant defensins differentially disrupt colony initiation, cell fusion and calcium homeostasis in Neurospora crassa. Muñoz A; Chu M; Marris PI; Sagaram US; Kaur J; Shah DM; Read ND Mol Microbiol; 2014 Jun; 92(6):1357-74. PubMed ID: 24773060 [TBL] [Abstract][Full Text] [Related]
19. Identification of defensin-encoding genes of Picea glauca: characterization of PgD5, a conserved spruce defensin with strong antifungal activity. Picart P; Pirttilä AM; Raventos D; Kristensen HH; Sahl HG BMC Plant Biol; 2012 Oct; 12():180. PubMed ID: 23035776 [TBL] [Abstract][Full Text] [Related]
20. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties. Bogdanov IV; Shenkarev ZO; Finkina EI; Melnikova DN; Rumynskiy EI; Arseniev AS; Ovchinnikova TV BMC Plant Biol; 2016 Apr; 16():107. PubMed ID: 27137920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]