These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 17240982)
21. Heterologous expression and solution structure of defensin from lentil Lens culinaris. Shenkarev ZO; Gizatullina AK; Finkina EI; Alekseeva EA; Balandin SV; Mineev KS; Arseniev AS; Ovchinnikova TV Biochem Biophys Res Commun; 2014 Aug; 451(2):252-7. PubMed ID: 25086358 [TBL] [Abstract][Full Text] [Related]
22. A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). Thevissen K; Cammue BP; Lemaire K; Winderickx J; Dickson RC; Lester RL; Ferket KK; Van Even F; Parret AH; Broekaert WF Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9531-6. PubMed ID: 10931938 [TBL] [Abstract][Full Text] [Related]
23. Live-cell Imaging of Fungal Cells to Investigate Modes of Entry and Subcellular Localization of Antifungal Plant Defensins. Islam KT; Shah DM; El-Mounadi K J Vis Exp; 2017 Dec; (130):. PubMed ID: 29364205 [TBL] [Abstract][Full Text] [Related]
24. Nuclear magnetic resonance solution structure of Pisum sativum defensin 2 provides evidence for the presence of hydrophobic surface-clusters. Pinheiro-Aguiar R; do Amaral VSG; Pereira IB; Kurtenbach E; Almeida FCL Proteins; 2020 Jan; 88(1):242-246. PubMed ID: 31294889 [TBL] [Abstract][Full Text] [Related]
26. Characterization of two novel defense peptides from pea (Pisum sativum) seeds. Almeida MS; Cabral KM; Zingali RB; Kurtenbach E Arch Biochem Biophys; 2000 Jun; 378(2):278-86. PubMed ID: 10860545 [TBL] [Abstract][Full Text] [Related]
27. The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. Aerts AM; François IE; Meert EM; Li QT; Cammue BP; Thevissen K J Mol Microbiol Biotechnol; 2007; 13(4):243-7. PubMed ID: 17827975 [TBL] [Abstract][Full Text] [Related]
28. Expression of a plant protein by Neurospora crassa. Rasmussen-Wilson SJ; Palas JS; Wolf VJ; Taft CS; Selitrennikoff CP Appl Environ Microbiol; 1997 Sep; 63(9):3488-93. PubMed ID: 9292999 [TBL] [Abstract][Full Text] [Related]
29. Analysis of localization of cell-cycle regulators in Neurospora crassa. Kuwabara K; Yoshihara R; Hatakeyama S; Tanaka S Fungal Biol; 2020 Jul; 124(7):613-618. PubMed ID: 32540184 [TBL] [Abstract][Full Text] [Related]
31. Differential potency of drosomycin to Neurospora crassa and its mutant: implications for evolutionary relationship between defensins from insects and plants. Gao B; Zhu SY Insect Mol Biol; 2008 Aug; 17(4):405-11. PubMed ID: 18651922 [TBL] [Abstract][Full Text] [Related]
32. Immunomodulatory Effects of the Pea Defensin Psd1 in the Caco-2/Immune Cells Co-Culture upon Bogdanov IV; Fateeva SI; Voropaev AD; Ovchinnikova TV; Finkina EI Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175419 [TBL] [Abstract][Full Text] [Related]
33. The regulatory protein NIT4 that mediates nitrate induction in Neurospora crassa contains a complex tripartite activation domain with a novel leucine-rich, acidic motif. Feng B; Marzluf GA Curr Genet; 1996 May; 29(6):537-48. PubMed ID: 8662193 [TBL] [Abstract][Full Text] [Related]
34. DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. Thevissen K; François IE; Takemoto JY; Ferket KK; Meert EM; Cammue BP FEMS Microbiol Lett; 2003 Sep; 226(1):169-73. PubMed ID: 13129623 [TBL] [Abstract][Full Text] [Related]
35. Functional expression and activity of the recombinant antifungal defensin PvD1r from Phaseolus vulgaris L. (common bean) seeds. Mello Ede O; dos Santos IS; Carvalho Ade O; de Souza LS; de Souza-Filho GA; do Nascimento VV; Machado OL; Zottich U; Gomes VM BMC Biochem; 2014 Apr; 15():7. PubMed ID: 24690228 [TBL] [Abstract][Full Text] [Related]
36. Human and plant proliferating-cell nuclear antigen have a highly conserved binding site for the p53-inducible gene product p21WAF1. Ball KL; Lane DP Eur J Biochem; 1996 May; 237(3):854-61. PubMed ID: 8647134 [TBL] [Abstract][Full Text] [Related]
37. Functional analysis of different regions of the positive-acting CYS3 regulatory protein of Neurospora crassa. Coulter KR; Marzluf GA Curr Genet; 1998 Jun; 33(6):395-405. PubMed ID: 9644202 [TBL] [Abstract][Full Text] [Related]
38. Crystal structure of rice defensin OsAFP1 and molecular insight into lipid-binding. Ochiai A; Ogawa K; Fukuda M; Suzuki M; Ito K; Tanaka T; Sagehashi Y; Taniguchi M J Biosci Bioeng; 2020 Jul; 130(1):6-13. PubMed ID: 32192842 [TBL] [Abstract][Full Text] [Related]
39. Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity. de Beer A; Vivier MA BMC Plant Biol; 2008 Jul; 8():75. PubMed ID: 18611251 [TBL] [Abstract][Full Text] [Related]
40. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: identification of an RGFRRR motif governing fungal cell entry. Sagaram US; El-Mounadi K; Buchko GW; Berg HR; Kaur J; Pandurangi RS; Smith TJ; Shah DM PLoS One; 2013; 8(12):e82485. PubMed ID: 24324798 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]