These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 17240982)
41. A novel bi-domain plant defensin MtDef5 with potent broad-spectrum antifungal activity binds to multiple phospholipids and forms oligomers. Islam KT; Velivelli SLS; Berg RH; Oakley B; Shah DM Sci Rep; 2017 Nov; 7(1):16157. PubMed ID: 29170445 [TBL] [Abstract][Full Text] [Related]
42. Phenotypic analysis of newly isolated short-lifespan Neurospora crassa mutant deficient in a high mobility group box protein. Yoshihara R; Li Z; Ishimori K; Kuwabara K; Hatakeyama S; Tanaka S Fungal Genet Biol; 2017 Aug; 105():28-36. PubMed ID: 28602830 [TBL] [Abstract][Full Text] [Related]
43. Deletion of a novel F-box protein, MUS-10, in Neurospora crassa leads to altered mitochondrial morphology, instability of mtDNA and senescence. Kato A; Kurashima K; Chae M; Sawada S; Hatakeyama S; Tanaka S; Inoue H Genetics; 2010 Aug; 185(4):1257-69. PubMed ID: 20516500 [TBL] [Abstract][Full Text] [Related]
44. A protective role for the embryo surrounding region of the maize endosperm, as evidenced by the characterisation of ZmESR-6, a defensin gene specifically expressed in this region. Balandín M; Royo J; Gómez E; Muniz LM; Molina A; Hueros G Plant Mol Biol; 2005 May; 58(2):269-82. PubMed ID: 16027978 [TBL] [Abstract][Full Text] [Related]
46. The mode of antifungal action of plant, insect and human defensins. Aerts AM; François IE; Cammue BP; Thevissen K Cell Mol Life Sci; 2008 Jul; 65(13):2069-79. PubMed ID: 18360739 [TBL] [Abstract][Full Text] [Related]
47. An additional role for the F-box motif: gene regulation within the Neurospora crassa sulfur control network. Kumar A; Paietta JV Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2417-22. PubMed ID: 9482900 [TBL] [Abstract][Full Text] [Related]
49. The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. Aerts AM; Carmona-Gutierrez D; Lefevre S; Govaert G; François IE; Madeo F; Santos R; Cammue BP; Thevissen K FEBS Lett; 2009 Aug; 583(15):2513-6. PubMed ID: 19596007 [TBL] [Abstract][Full Text] [Related]
50. The antifungal plant defensin AhPDF1.1b is a beneficial factor involved in adaptive response to zinc overload when it is expressed in yeast cells. Mith O; Benhamdi A; Castillo T; Bergé M; MacDiarmid CW; Steffen J; Eide DJ; Perrier V; Subileau M; Gosti F; Berthomieu P; Marquès L Microbiologyopen; 2015 Jun; 4(3):409-22. PubMed ID: 25755096 [TBL] [Abstract][Full Text] [Related]
51. Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process. van der Weerden NL; Hancock RE; Anderson MA J Biol Chem; 2010 Nov; 285(48):37513-20. PubMed ID: 20861017 [TBL] [Abstract][Full Text] [Related]
52. Interaction between the plant ApDef Soares JR; José Tenório de Melo E; da Cunha M; Fernandes KVS; Taveira GB; da Silva Pereira L; Pimenta S; Trindade FG; Regente M; Pinedo M; de la Canal L; Gomes VM; de Oliveira Carvalho A Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt A):3429-3443. PubMed ID: 27614033 [TBL] [Abstract][Full Text] [Related]
53. Plant defensins: defense, development and application. Stotz HU; Thomson JG; Wang Y Plant Signal Behav; 2009 Nov; 4(11):1010-2. PubMed ID: 20009545 [TBL] [Abstract][Full Text] [Related]
54. Coordinated Regulation of Membrane Homeostasis and Drug Accumulation by Novel Kinase STK-17 in Response to Antifungal Azole Treatment. Hu C; Zhou M; Cao X; Xue W; Zhang Z; Li S; Sun X Microbiol Spectr; 2022 Feb; 10(1):e0012722. PubMed ID: 35196787 [TBL] [Abstract][Full Text] [Related]
55. cDNA cloning, functional expression and antifungal activities of a dimeric plant defensin SPE10 from Pachyrrhizus erosus seeds. Song X; Wang J; Wu F; Li X; Teng M; Gong W Plant Mol Biol; 2005 Jan; 57(1):13-20. PubMed ID: 15821865 [TBL] [Abstract][Full Text] [Related]
56. The evolution, function and mechanisms of action for plant defensins. Parisi K; Shafee TMA; Quimbar P; van der Weerden NL; Bleackley MR; Anderson MA Semin Cell Dev Biol; 2019 Apr; 88():107-118. PubMed ID: 29432955 [TBL] [Abstract][Full Text] [Related]
57. Plasma Membrane Integrity During Cell-Cell Fusion and in Response to Pore-Forming Drugs Is Promoted by the Penta-EF-Hand Protein PEF1 in Schumann MR; Brandt U; Adis C; Hartung L; Fleißner A Genetics; 2019 Sep; 213(1):195-211. PubMed ID: 31270133 [TBL] [Abstract][Full Text] [Related]
58. Structural and biological features of a novel plant defensin from Brugmansia x candida. Kaewklom S; Wongchai M; Petvises S; Hanpithakphong W; Aunpad R PLoS One; 2018; 13(8):e0201668. PubMed ID: 30071099 [TBL] [Abstract][Full Text] [Related]
59. Nicotiana alata Defensin Chimeras Reveal Differences in the Mechanism of Fungal and Tumor Cell Killing and an Enhanced Antifungal Variant. Bleackley MR; Payne JA; Hayes BM; Durek T; Craik DJ; Shafee TM; Poon IK; Hulett MD; van der Weerden NL; Anderson MA Antimicrob Agents Chemother; 2016 Oct; 60(10):6302-12. PubMed ID: 27503651 [TBL] [Abstract][Full Text] [Related]
60. Prokaryotic expression of a constitutively expressed Tephrosia villosa defensin and its potent antifungal activity. Vijayan S; Guruprasad L; Kirti PB Appl Microbiol Biotechnol; 2008 Oct; 80(6):1023-32. PubMed ID: 18726095 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]