These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 17241077)

  • 1. Variably elastic hydrogel patterned via capillary action in microchannels.
    Dong R; Jensen TW; Engberg K; Nuzzo RG; Leckband DE
    Langmuir; 2007 Jan; 23(3):1483-8. PubMed ID: 17241077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple microindentation technique for mapping the microscale compliance of soft hydrated materials and tissues.
    Jacot JG; Dianis S; Schnall J; Wong JY
    J Biomed Mater Res A; 2006 Dec; 79(3):485-94. PubMed ID: 16779854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nonintrusive method of measuring the local mechanical properties of soft hydrogels using magnetic microneedles.
    Chippada U; Yurke B; Georges PC; Langrana NA
    J Biomech Eng; 2009 Feb; 131(2):021014. PubMed ID: 19102573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introducing chemical functionality in Fmoc-peptide gels for cell culture.
    Jayawarna V; Richardson SM; Hirst AR; Hodson NW; Saiani A; Gough JE; Ulijn RV
    Acta Biomater; 2009 Mar; 5(3):934-43. PubMed ID: 19249724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-activated immobilization of biomolecules to agarose hydrogels for controlled cellular response.
    Luo Y; Shoichet MS
    Biomacromolecules; 2004; 5(6):2315-23. PubMed ID: 15530047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of mechanical properties of insulin crystals by atomic force microscopy.
    Guo S; Akhremitchev BB
    Langmuir; 2008 Feb; 24(3):880-7. PubMed ID: 18163652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ AFM studies of the phase-transition behavior of single thermoresponsive hydrogel particles.
    Wiedemair J; Serpe MJ; Kim J; Masson JF; Lyon LA; Mizaikoff B; Kranz C
    Langmuir; 2007 Jan; 23(1):130-7. PubMed ID: 17190495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels.
    Buckley CT; Thorpe SD; O'Brien FJ; Robinson AJ; Kelly DJ
    J Mech Behav Biomed Mater; 2009 Oct; 2(5):512-21. PubMed ID: 19627858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AFM measurement of the stiffness of layers of agarose gel patterned with polylysine.
    Salerno M; Dante S; Patra N; Diaspro A
    Microsc Res Tech; 2010 Oct; 73(10):982-90. PubMed ID: 20232377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds.
    Hajjarian Z; Nia HT; Ahn S; Grodzinsky AJ; Jain RK; Nadkarni SK
    Sci Rep; 2016 Dec; 6():37949. PubMed ID: 27905494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation.
    Engler AJ; Rehfeldt F; Sen S; Discher DE
    Methods Cell Biol; 2007; 83():521-45. PubMed ID: 17613323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering.
    Tripathi A; Kathuria N; Kumar A
    J Biomed Mater Res A; 2009 Sep; 90(3):680-94. PubMed ID: 18563830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular recognition remolds the self-assembly of hydrogelators and increases the elasticity of the hydrogel by 10(6)-fold.
    Zhang Y; Yang Z; Yuan F; Gu H; Gao P; Xu B
    J Am Chem Soc; 2004 Nov; 126(46):15028-9. PubMed ID: 15547990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties.
    Noh I; Kim GW; Choi YJ; Kim MS; Park Y; Lee KB; Kim IS; Hwang SJ; Tae G
    Biomed Mater; 2006 Sep; 1(3):116-23. PubMed ID: 18458391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelasticity in wild-type and vinculin-deficient (5.51) mouse F9 embryonic carcinoma cells examined by atomic force microscopy and rheology.
    Goldmann WH; Ezzell RM
    Exp Cell Res; 1996 Jul; 226(1):234-7. PubMed ID: 8660960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temoporfin-loaded liposomal gels: viscoelastic properties and in vitro skin penetration.
    Dragicevic-Curic N; Winter S; Stupar M; Milic J; Krajisnik D; Gitter B; Fahr A
    Int J Pharm; 2009 May; 373(1-2):77-84. PubMed ID: 19429291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface elasticity and charge concentration-dependent endothelial cell attachment to copolymer polyelectrolyte hydrogel.
    Kim S; English AE; Kihm KD
    Acta Biomater; 2009 Jan; 5(1):144-51. PubMed ID: 18774763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agarose and methylcellulose hydrogel blends for nerve regeneration applications.
    Martin BC; Minner EJ; Wiseman SL; Klank RL; Gilbert RJ
    J Neural Eng; 2008 Jun; 5(2):221-31. PubMed ID: 18503105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and rheological properties of aqueous viscoelastic solutions and gels of tripodal cholamide-based self-assembled supramolecules.
    Terech P; Maitra U
    J Phys Chem B; 2008 Oct; 112(43):13483-92. PubMed ID: 18834170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.