BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 17241109)

  • 1. Regulation and enzymatic basis of bone resorption by human osteoclasts.
    Fuller K; Kirstein B; Chambers TJ
    Clin Sci (Lond); 2007 Jun; 112(11):567-75. PubMed ID: 17241109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone.
    Everts V; Korper W; Hoeben KA; Jansen ID; Bromme D; Cleutjens KB; Heeneman S; Peters C; Reinheckel T; Saftig P; Beertsen W
    J Bone Miner Res; 2006 Sep; 21(9):1399-408. PubMed ID: 16939398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relative contribution of cysteine proteinases and matrix metalloproteinases to the resorption process in osteoclasts derived from long bone and scapula.
    Shorey S; Heersche JN; Manolson MF
    Bone; 2004 Oct; 35(4):909-17. PubMed ID: 15454098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification.
    Henriksen K; Sørensen MG; Nielsen RH; Gram J; Schaller S; Dziegiel MH; Everts V; Bollerslev J; Karsdal MA
    J Bone Miner Res; 2006 Jan; 21(1):58-66. PubMed ID: 16355274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erosive arthritis in a patient with pycnodysostosis: an experiment of nature.
    Ainola M; Valleala H; Nykänen P; Risteli J; Hanemaaijer R; Konttinen YT
    Arthritis Rheum; 2008 Nov; 58(11):3394-401. PubMed ID: 18975331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) by bone resorptive factors in osteoblastic cells.
    Uchida M; Shima M; Shimoaka T; Fujieda A; Obara K; Suzuki H; Nagai Y; Ikeda T; Yamato H; Kawaguchi H
    J Cell Physiol; 2000 Nov; 185(2):207-14. PubMed ID: 11025442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Naringenin inhibits human osteoclastogenesis and osteoclastic bone resorption.
    La VD; Tanabe S; Grenier D
    J Periodontal Res; 2009 Apr; 44(2):193-8. PubMed ID: 18705650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation.
    Garnero P; Ferreras M; Karsdal MA; Nicamhlaoibh R; Risteli J; Borel O; Qvist P; Delmas PD; Foged NT; Delaissé JM
    J Bone Miner Res; 2003 May; 18(5):859-67. PubMed ID: 12733725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly potent inhibitor of cathepsin K (relacatib) reduces biomarkers of bone resorption both in vitro and in an acute model of elevated bone turnover in vivo in monkeys.
    Kumar S; Dare L; Vasko-Moser JA; James IE; Blake SM; Rickard DJ; Hwang SM; Tomaszek T; Yamashita DS; Marquis RW; Oh H; Jeong JU; Veber DF; Gowen M; Lark MW; Stroup G
    Bone; 2007 Jan; 40(1):122-31. PubMed ID: 16962401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Murine osteoclast formation and function: differential regulation by humoral agents.
    Fuller K; Kirstein B; Chambers TJ
    Endocrinology; 2006 Apr; 147(4):1979-85. PubMed ID: 16384864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Receptor activator of NF-kappaB ligand induces the expression of carbonic anhydrase II, cathepsin K, and matrix metalloproteinase-9 in osteoclast precursor RAW264.7 cells.
    Fujisaki K; Tanabe N; Suzuki N; Kawato T; Takeichi O; Tsuzukibashi O; Makimura M; Ito K; Maeno M
    Life Sci; 2007 Mar; 80(14):1311-8. PubMed ID: 17306833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate.
    Stroup GB; Lark MW; Veber DF; Bhattacharyya A; Blake S; Dare LC; Erhard KF; Hoffman SJ; James IE; Marquis RW; Ru Y; Vasko-Moser JA; Smith BR; Tomaszek T; Gowen M
    J Bone Miner Res; 2001 Oct; 16(10):1739-46. PubMed ID: 11585335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different cysteine proteinases involved in bone resorption and osteoclast formation.
    Brage M; Abrahamson M; Lindström V; Grubb A; Lerner UH
    Calcif Tissue Int; 2005 Jun; 76(6):439-47. PubMed ID: 15906014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The resorptive apparatus of osteoclasts supports lysosomotropism and increases potency of basic versus non-basic inhibitors of cathepsin K.
    Fuller K; Lindstrom E; Edlund M; Henderson I; Grabowska U; Szewczyk KA; Moss R; Samuelsson B; Chambers TJ
    Bone; 2010 May; 46(5):1400-7. PubMed ID: 20097319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of collagen in the bone-resorbing compartment underlying the osteoclast involves both cysteine-proteinases and matrix metalloproteinases.
    Everts V; Delaissé JM; Korper W; Niehof A; Vaes G; Beertsen W
    J Cell Physiol; 1992 Feb; 150(2):221-31. PubMed ID: 1734028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities.
    Delaissé JM; Andersen TL; Engsig MT; Henriksen K; Troen T; Blavier L
    Microsc Res Tech; 2003 Aug; 61(6):504-13. PubMed ID: 12879418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of fibroblasts and fibroblast-derived factors in periprosthetic osteolysis.
    Koreny T; Tunyogi-Csapó M; Gál I; Vermes C; Jacobs JJ; Glant TT
    Arthritis Rheum; 2006 Oct; 54(10):3221-32. PubMed ID: 17009257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monocyte chemotactic protein-1 mediates prostate cancer-induced bone resorption.
    Lu Y; Cai Z; Xiao G; Keller ET; Mizokami A; Yao Z; Roodman GD; Zhang J
    Cancer Res; 2007 Apr; 67(8):3646-53. PubMed ID: 17440076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human mesenchymal stem cell derived osteoblasts degrade organic bone matrix in vitro by matrix metalloproteinases.
    Parikka V; Väänänen A; Risteli J; Salo T; Sorsa T; Väänänen HK; Lehenkari P
    Matrix Biol; 2005 Sep; 24(6):438-47. PubMed ID: 16098718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An orally active cathepsin K inhibitor, furan-2-carboxylic acid, 1-{1-[4-fluoro-2-(2-oxo-pyrrolidin-1-yl)-phenyl]-3-oxo-piperidin-4-ylcarbamoyl}-cyclohexyl)-amide (OST-4077), inhibits osteoclast activity in vitro and bone loss in ovariectomized rats.
    Kim MK; Kim HD; Park JH; Lim JI; Yang JS; Kwak WY; Sung SY; Kim HJ; Kim SH; Lee CH; Shim JY; Bae MH; Shin YA; Huh Y; Han TD; Chong W; Choi H; Ahn BN; Yang SO; Son MH
    J Pharmacol Exp Ther; 2006 Aug; 318(2):555-62. PubMed ID: 16699068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.