BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 17241202)

  • 1. Growth of Campylobacter jejuni on nitrate and nitrite: electron transport to NapA and NrfA via NrfH and distinct roles for NrfA and the globin Cgb in protection against nitrosative stress.
    Pittman MS; Elvers KT; Lee L; Jones MA; Poole RK; Park SF; Kelly DJ
    Mol Microbiol; 2007 Jan; 63(2):575-90. PubMed ID: 17241202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of an inducible single-domain hemoglobin in mediating resistance to nitric oxide and nitrosative stress in Campylobacter jejuni and Campylobacter coli.
    Elvers KT; Wu G; Gilberthorpe NJ; Poole RK; Park SF
    J Bacteriol; 2004 Aug; 186(16):5332-41. PubMed ID: 15292134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide reactivities of the two globins of the foodborne pathogen Campylobacter jejuni: roles in protection from nitrosative stress and analysis of potential reductants.
    Tinajero-Trejo M; Vreugdenhil A; Sedelnikova SE; Davidge KS; Poole RK
    Nitric Oxide; 2013 Nov; 34():65-75. PubMed ID: 23764490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NssR, a member of the Crp-Fnr superfamily from Campylobacter jejuni, regulates a nitrosative stress-responsive regulon that includes both a single-domain and a truncated haemoglobin.
    Elvers KT; Turner SM; Wainwright LM; Marsden G; Hinds J; Cole JA; Poole RK; Penn CW; Park SF
    Mol Microbiol; 2005 Aug; 57(3):735-50. PubMed ID: 16045618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes.
    Simon J; Gross R; Einsle O; Kroneck PM; Kröger A; Klimmek O
    Mol Microbiol; 2000 Feb; 35(3):686-96. PubMed ID: 10672190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do globins in microaerophilic Campylobacter jejuni confer nitrosative stress tolerance under oxygen limitation?
    Avila-Ramirez C; Tinajero-Trejo M; Davidge KS; Monk CE; Kelly DJ; Poole RK
    Antioxid Redox Signal; 2013 Feb; 18(4):424-31. PubMed ID: 22816769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein.
    Simon J; Sänger M; Schuster SC; Gross R
    Mol Microbiol; 2003 Jul; 49(1):69-79. PubMed ID: 12823811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NapGH components of the periplasmic nitrate reductase of Escherichia coli K-12: location, topology and physiological roles in quinol oxidation and redox balancing.
    Brondijk TH; Nilavongse A; Filenko N; Richardson DJ; Cole JA
    Biochem J; 2004 Apr; 379(Pt 1):47-55. PubMed ID: 14674886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of NapF, NapG and NapH, subunits of the Escherichia coli periplasmic nitrate reductase, in ubiquinol oxidation.
    Brondijk TH; Fiegen D; Richardson DJ; Cole JA
    Mol Microbiol; 2002 Apr; 44(1):245-55. PubMed ID: 11967083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen- and NssR-dependent globin expression and enhanced iron acquisition in the response of campylobacter to nitrosative stress.
    Monk CE; Pearson BM; Mulholland F; Smith HK; Poole RK
    J Biol Chem; 2008 Oct; 283(42):28413-25. PubMed ID: 18682395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The NO-responsive hemoglobins of Campylobacter jejuni: concerted responses of two globins to NO and evidence in vitro for globin regulation by the transcription factor NssR.
    Smith HK; Shepherd M; Monk C; Green J; Poole RK
    Nitric Oxide; 2011 Aug; 25(2):234-41. PubMed ID: 21199674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the NapGH quinol dehydrogenase complex involved in Wolinella succinogenes nitrate respiration.
    Kern M; Simon J
    Mol Microbiol; 2008 Sep; 69(5):1137-52. PubMed ID: 18631238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The tetraheme cytochrome c NrfH is required to anchor the cytochrome c nitrite reductase (NrfA) in the membrane of Wolinella succinogenes.
    Simon J; Pisa R; Stein T; Eichler R; Klimmek O; Gross R
    Eur J Biochem; 2001 Nov; 268(22):5776-82. PubMed ID: 11722563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The oxidative and nitrosative stress defence network of Wolinella succinogenes: cytochrome c nitrite reductase mediates the stress response to nitrite, nitric oxide, hydroxylamine and hydrogen peroxide.
    Kern M; Volz J; Simon J
    Environ Microbiol; 2011 Sep; 13(9):2478-94. PubMed ID: 21672122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The globins of Campylobacter jejuni.
    Tinajero-Trejo M; Shepherd M
    Adv Microb Physiol; 2013; 63():97-145. PubMed ID: 24054796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Campylobacter jejuni respiratory oxidases and reductases in host colonization.
    Weingarten RA; Grimes JL; Olson JW
    Appl Environ Microbiol; 2008 Mar; 74(5):1367-75. PubMed ID: 18192421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes.
    Kern M; Mager AM; Simon J
    Microbiology (Reading); 2007 Nov; 153(Pt 11):3739-3747. PubMed ID: 17975082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A seven-gene operon essential for formate-dependent nitrite reduction to ammonia by enteric bacteria.
    Hussain H; Grove J; Griffiths L; Busby S; Cole J
    Mol Microbiol; 1994 Apr; 12(1):153-63. PubMed ID: 8057835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA.
    Gao H; Yang ZK; Barua S; Reed SB; Romine MF; Nealson KH; Fredrickson JK; Tiedje JM; Zhou J
    ISME J; 2009 Aug; 3(8):966-76. PubMed ID: 19387485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periplasmic nitrate reduction in Wolinella succinogenes: cytoplasmic NapF facilitates NapA maturation and requires the menaquinol dehydrogenase NapH for membrane attachment.
    Kern M; Simon J
    Microbiology (Reading); 2009 Aug; 155(Pt 8):2784-2794. PubMed ID: 19477904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.