BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 1724129)

  • 1. Membrane-associated sodium channels and cytoplasmic precursors in glial cells. Immunocytochemical, electrophysiological, and pharmacological studies.
    Minturn JE; Sontheimer H; Black JA; Angelides KJ; Ransom BR; Ritchie JM; Waxman SG
    Ann N Y Acad Sci; 1991; 633():255-71. PubMed ID: 1724129
    [No Abstract]   [Full Text] [Related]  

  • 2. Glial cells in the rat optic nerve. The search for the type-2 astrocyte.
    Fulton BP; Burne JF; Raff MC
    Ann N Y Acad Sci; 1991; 633():27-34. PubMed ID: 1789553
    [No Abstract]   [Full Text] [Related]  

  • 3. Sodium channel expression in optic nerve astrocytes chronically deprived of axonal contact.
    Minturn JE; Sontheimer H; Black JA; Ransom BR; Waxman SG
    Glia; 1992; 6(1):19-29. PubMed ID: 1324888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium channel expression detected with antibody 7493 in A2B5+ and A2B5- astrocytes from rat optic nerve in vitro.
    Minturn JE; Black JA; Angelides KJ; Waxman SG
    Glia; 1990; 3(5):358-67. PubMed ID: 2172163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium channels in astrocytes of rat optic nerve in situ: immuno-electron microscopic studies.
    Black JA; Waxman SG; Friedman B; Elmer LW; Angelides KJ
    Glia; 1989; 2(5):353-69. PubMed ID: 2553601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two types of Na(+)-currents in cultured rat optic nerve astrocytes: changes with time in culture and with age of culture derivation.
    Sontheimer H; Minturn JE; Black JA; Ransom BR; Waxman SG
    J Neurosci Res; 1991 Oct; 30(2):275-87. PubMed ID: 1665865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isoform-specific expression of sodium channels in astrocytes in vitro: immunocytochemical observations.
    Black JA; Westenbroek R; Minturn JE; Ransom BR; Catterall WA; Waxman SG
    Glia; 1995 Jun; 14(2):133-44. PubMed ID: 7558240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The expression of sodium channels in astrocytes in situ and in vitro.
    Black JA; Sontheimer H; Minturn JE; Ransom BR; Waxman SG
    Prog Brain Res; 1992; 94():89-107. PubMed ID: 1337617
    [No Abstract]   [Full Text] [Related]  

  • 9. Type II sodium channels in spinal cord astrocytes in situ: immunocytochemical observations.
    Black JA; Westenbroek R; Ransom BR; Catterall WA; Waxman SG
    Glia; 1994 Nov; 12(3):219-27. PubMed ID: 7851989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of janusin (J1-160/180) in the retina and optic nerve of the developing and adult mouse.
    Bartsch U; Pesheva P; Raff M; Schachner M
    Glia; 1993 Sep; 9(1):57-69. PubMed ID: 8244531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion channel expression by white matter glia: I. Type 2 astrocytes and oligodendrocytes.
    Barres BA; Chun LL; Corey DP
    Glia; 1988; 1(1):10-30. PubMed ID: 2466789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of glial cells molecules in the optic nerve of adult dromedary camel (Camelus dromedarius): A histological and immunohistochemical analysis.
    Metwally E; Farouk SM; Hossain MS; Raihan O
    Anat Histol Embryol; 2019 Jan; 48(1):74-86. PubMed ID: 30450567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal cord astrocytes in vitro: phenotypic diversity and sodium channel immunoreactivity.
    Black JA; Sontheimer H; Waxman SG
    Glia; 1993 Apr; 7(4):272-85. PubMed ID: 8391514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paranodal axoglial junction is required for the maintenance of the Nav1.6-type sodium channel in the node of Ranvier in the optic nerves but not in peripheral nerve fibers in the sulfatide-deficient mice.
    Suzuki A; Hoshi T; Ishibashi T; Hayashi A; Yamaguchi Y; Baba H
    Glia; 2004 May; 46(3):274-83. PubMed ID: 15048850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage gated ionic channels in rat cultured astrocytes, reactive astrocytes and an astrocyte-oligodendrocyte progenitor cell.
    Bevan S; Lindsay RM; Perkins MN; Raff MC
    J Physiol (Paris); 1987; 82(4):327-35. PubMed ID: 2460620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behaviour of macroglial cells, as identified by their intermediate filament complement, during optic nerve regeneration of Xenopus tadpole.
    Rungger-Brändle E; Alliod C; Fouquet B; Messerli MM
    Glia; 1995 Apr; 13(4):255-71. PubMed ID: 7542224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium channels in axons and glial cells of the optic nerve of Necturus maculosa.
    Tang CM; Strichartz GR; Orkand RK
    J Gen Physiol; 1979 Nov; 74(5):629-42. PubMed ID: 512633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium channels in the axolemma of normal and degenerating rabbit optic nerve.
    Pellegrino RG; Ritchie JM
    Proc R Soc Lond B Biol Sci; 1984 Aug; 222(1227):155-60. PubMed ID: 6148755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of glial precursor cell development in the mouse optic nerve by sonic hedgehog from retinal ganglion cells.
    Dakubo GD; Beug ST; Mazerolle CJ; Thurig S; Wang Y; Wallace VA
    Brain Res; 2008 Sep; 1228():27-42. PubMed ID: 18625210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An epithelium-type cytoskeleton in a glial cell: astrocytes of amphibian optic nerves contain cytokeratin filaments and are connected by desmosomes.
    Rungger-Brändle E; Achtstätter T; Franke WW
    J Cell Biol; 1989 Aug; 109(2):705-16. PubMed ID: 2474553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.