These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 17241725)

  • 1. Use of handheld X-ray fluorescence spectrometry units for identification of arsenic in treated wood.
    Block CN; Shibata T; Solo-Gabriele HM; Townsend TG
    Environ Pollut; 2007 Jul; 148(2):627-33. PubMed ID: 17241725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online sorting of recovered wood waste by automated XRF-technology. Part I: detection of preservative-treated wood waste.
    Rasem Hasan A; Schindler J; Solo-Gabriele HM; Townsend TG
    Waste Manag; 2011 Apr; 31(4):688-94. PubMed ID: 21186117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mass balance approach for evaluating leachable arsenic and chromium from an in-service CCA-treated wood structure.
    Shibata T; Solo-Gabriele HM; Fleming LE; Cai Y; Townsend TG
    Sci Total Environ; 2007 Jan; 372(2-3):624-35. PubMed ID: 17161449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of commercial landscaping mulch for possible contamination from CCA.
    Jacobi G; Solo-Gabriele H; Dubey B; Townsend T; Shibata T
    Waste Manag; 2007; 27(12):1765-73. PubMed ID: 17174544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online sorting of recovered wood waste by automated XRF-technology: part II. Sorting efficiencies.
    Hasan AR; Solo-Gabriele H; Townsend T
    Waste Manag; 2011 Apr; 31(4):695-704. PubMed ID: 21194917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution and mobility of chromium, copper, and arsenic in soils collected near CCA-treated wood structures in Korea.
    Kim H; Kim DJ; Koo JH; Park JG; Jang YC
    Sci Total Environ; 2007 Mar; 374(2-3):273-81. PubMed ID: 17292945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: considerations for sample preparation and measurement conditions.
    Parsons C; Margui Grabulosa E; Pili E; Floor GH; Roman-Ross G; Charlet L
    J Hazard Mater; 2013 Nov; 262():1213-22. PubMed ID: 22819961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste.
    Solo-Gabriele HM; Townsend TG; Hahn DW; Moskal TM; Hosein N; Jambeck J; Jacobi G
    Waste Manag; 2004; 24(4):413-24. PubMed ID: 15081070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of chromium, copper, and arsenic from CCA-treated wood by using wood vinegar.
    Choi YS; Ahn BJ; Kim GH
    Bioresour Technol; 2012 Sep; 120():328-31. PubMed ID: 22781144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of methods for sorting CCA-treated wood.
    Jacobi G; Solo-Gabriele H; Townsend T; Dubey B
    Waste Manag; 2007; 27(11):1617-25. PubMed ID: 17197165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroadsorption-assisted direct determination of trace arsenic without interference using transmission X-ray fluorescence spectroscopy.
    Jiang TJ; Guo Z; Liu JH; Huang XJ
    Anal Chem; 2015 Aug; 87(16):8503-9. PubMed ID: 26211572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of measuring arsenic and selenium in human skin using in vivo x-ray fluorescence (XRF)--a comparison of methods.
    Shehab H; Desouza ED; O'Meara J; Pejović-Milić A; Chettle DR; Fleming DE; McNeill FE
    Physiol Meas; 2016 Jan; 37(1):145-61. PubMed ID: 26683849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic, chromium, and copper leaching from CCA-treated wood and their potential impacts on landfill leachate in a tropical country.
    Kamchanawong S; Veerakajohnsak C
    Environ Technol; 2010 Apr; 31(4):381-94. PubMed ID: 20450112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term soil accumulation of chromium, copper, and arsenic adjacent to preservative-treated wood.
    Lebow S; Foster D; Evans J
    Bull Environ Contam Toxicol; 2004 Feb; 72(2):225-32. PubMed ID: 15106755
    [No Abstract]   [Full Text] [Related]  

  • 15. Variation of arsenic concentration on surfaces of in-service CCA-treated wood planks in a park and its influencing field factors.
    Tang Y; Gao W; Wang X; Ding S; An T; Xiao W; Wong MH; Zhang C
    Environ Monit Assess; 2015 Jan; 187(1):4214. PubMed ID: 25512245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. K-shell X-ray fluorescence measurements of arsenic depth-dependent concentration in polyester resin discs using the fundamental parameter method.
    Gherase MR; Fleming DE
    Appl Radiat Isot; 2009 Jan; 67(1):50-4. PubMed ID: 18703343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pilot simulation study of arsenic tracked from CCA-treated decks onto carpets.
    Patch SC; Ullman MC; Maas RP; Jetter JJ
    Sci Total Environ; 2009 Nov; 407(22):5818-24. PubMed ID: 19703704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pilot scale evaluation of sorting technologies for CCA treated wood waste.
    Blassino M; Solo-Gabriele H; Townsend T
    Waste Manag Res; 2002 Jun; 20(3):290-301. PubMed ID: 12152897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry and toxicology of building timbers pressure-treated with chromated copper arsenate: a review.
    Katz SA; Salem H
    J Appl Toxicol; 2005; 25(1):1-7. PubMed ID: 15669035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of copper, chromium and arsenic from preservative-treated wood by chemical extraction-fungal bioleaching.
    Sierra-Alvarez R
    Waste Manag; 2009 Jun; 29(6):1885-91. PubMed ID: 19136247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.