These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 17241823)
1. Chemical proteomics for drug discovery based on compound-immobilized affinity chromatography. Katayama H; Oda Y J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Aug; 855(1):21-7. PubMed ID: 17241823 [TBL] [Abstract][Full Text] [Related]
3. Proteomic methods for drug target discovery. Sleno L; Emili A Curr Opin Chem Biol; 2008 Feb; 12(1):46-54. PubMed ID: 18282485 [TBL] [Abstract][Full Text] [Related]
4. Affinity chromatography: a useful tool in proteomics studies. Azarkan M; Huet J; Baeyens-Volant D; Looze Y; Vandenbussche G J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):81-90. PubMed ID: 17113368 [TBL] [Abstract][Full Text] [Related]
5. Identification of molecular target of AMP-activated protein kinase activator by affinity purification and mass spectrometry. Kosaka T; Okuyama R; Sun W; Ogata T; Harada J; Araki K; Izumi M; Yoshida T; Okuno A; Fujiwara T; Ohsumi J; Ichikawa K Anal Chem; 2005 Apr; 77(7):2050-5. PubMed ID: 15801737 [TBL] [Abstract][Full Text] [Related]
6. An immuno-chemo-proteomics method for drug target deconvolution. Saxena C; Zhen E; Higgs RE; Hale JE J Proteome Res; 2008 Aug; 7(8):3490-7. PubMed ID: 18590316 [TBL] [Abstract][Full Text] [Related]
7. Affinity selection-mass spectrometry screening techniques for small molecule drug discovery. Annis DA; Nickbarg E; Yang X; Ziebell MR; Whitehurst CE Curr Opin Chem Biol; 2007 Oct; 11(5):518-26. PubMed ID: 17931956 [TBL] [Abstract][Full Text] [Related]
8. Specific capture of uranyl protein targets by metal affinity chromatography. Basset C; Dedieu A; Guérin P; Quéméneur E; Meyer D; Vidaud C J Chromatogr A; 2008 Mar; 1185(2):233-40. PubMed ID: 18308325 [TBL] [Abstract][Full Text] [Related]
9. Specific affinity extraction method for small molecule-binding proteins. Mano N; Sato K; Goto J Anal Chem; 2006 Jul; 78(13):4668-75. PubMed ID: 16808480 [TBL] [Abstract][Full Text] [Related]
10. An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Bürckstümmer T; Bennett KL; Preradovic A; Schütze G; Hantschel O; Superti-Furga G; Bauch A Nat Methods; 2006 Dec; 3(12):1013-9. PubMed ID: 17060908 [TBL] [Abstract][Full Text] [Related]
11. Selective ligand purification using high-performance affinity beads. Ohtsu Y; Ohba R; Imamura Y; Kobayashi M; Hatori H; Zenkoh T; Hatakeyama M; Manabe T; Hino M; Yamaguchi Y; Kataoka K; Kawaguchi H; Watanabe H; Handa H Anal Biochem; 2005 Mar; 338(2):245-52. PubMed ID: 15745744 [TBL] [Abstract][Full Text] [Related]
12. Identification and characterization of molecular targets of natural products by mass spectrometry. Cheng KW; Wong CC; Wang M; He QY; Chen F Mass Spectrom Rev; 2010; 29(1):126-55. PubMed ID: 19319922 [TBL] [Abstract][Full Text] [Related]
13. Target-based drug discovery: the emerging success of frontal affinity chromatography coupled to mass spectrometry. Calleri E; Temporini C; Caccialanza G; Massolini G ChemMedChem; 2009 Jun; 4(6):905-16. PubMed ID: 19378293 [TBL] [Abstract][Full Text] [Related]
14. Comparative profiling of serum glycoproteome by sequential purification of glycoproteins and 2-nitrobenzensulfenyl (NBS) stable isotope labeling: a new approach for the novel biomarker discovery for cancer. Ueda K; Katagiri T; Shimada T; Irie S; Sato TA; Nakamura Y; Daigo Y J Proteome Res; 2007 Sep; 6(9):3475-83. PubMed ID: 17705522 [TBL] [Abstract][Full Text] [Related]
15. Pathway proteomics and chemical proteomics team up in drug discovery. Hopf C; Bantscheff M; Drewes G Neurodegener Dis; 2007; 4(2-3):270-80. PubMed ID: 17596721 [TBL] [Abstract][Full Text] [Related]
16. [Comparative chemical proteomics: simultaneous identification of disease-specific protein targets and their small molecule-binding partners, suitable as drug candidates]. Dormán G; Puskás LG; Fehér LZ; Hackler L; Lorincz Z; Lang C; Urge L; Darvas F Acta Pharm Hung; 2006; 76(1):3-9. PubMed ID: 17094670 [TBL] [Abstract][Full Text] [Related]
17. Resolving protein interactions and complexes by affinity purification followed by label-based quantitative mass spectrometry. Trinkle-Mulcahy L Proteomics; 2012 May; 12(10):1623-38. PubMed ID: 22610586 [TBL] [Abstract][Full Text] [Related]
18. Advances and applications of de novo designed affinity ligands in proteomics. Roque AC; Lowe CR Biotechnol Adv; 2006; 24(1):17-26. PubMed ID: 16006085 [TBL] [Abstract][Full Text] [Related]
19. Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Boersema PJ; Aye TT; van Veen TA; Heck AJ; Mohammed S Proteomics; 2008 Nov; 8(22):4624-32. PubMed ID: 18850632 [TBL] [Abstract][Full Text] [Related]
20. Revealing promiscuous drug-target interactions by chemical proteomics. Bantscheff M; Scholten A; Heck AJ Drug Discov Today; 2009 Nov; 14(21-22):1021-9. PubMed ID: 19596079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]