BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 17241959)

  • 1. Sap flow estimates of stand transpiration at two slope positions in a Japanese cedar forest watershed.
    Kumagai T; Aoki S; Shimizu T; Otsuki K
    Tree Physiol; 2007 Feb; 27(2):161-8. PubMed ID: 17241959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest.
    Shinohara Y; Tsuruta K; Ogura A; Noto F; Komatsu H; Otsuki K; Maruyama T
    Tree Physiol; 2013 May; 33(5):550-8. PubMed ID: 23640874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA.
    Moore GW; Bond BJ; Jones JA; Phillips N; Meinzer FC
    Tree Physiol; 2004 May; 24(5):481-91. PubMed ID: 14996653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of sample size on sap flux-based stand-scale transpiration estimates.
    Kume T; Tsuruta K; Komatsu H; Kumagai T; Higashi N; Shinohara Y; Otsuki K
    Tree Physiol; 2010 Jan; 30(1):129-38. PubMed ID: 19822581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radial profiles of sap flow with increasing tree size in maritime pine.
    Delzon S; Sartore M; Granier A; Loustau D
    Tree Physiol; 2004 Nov; 24(11):1285-93. PubMed ID: 15339738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restoration thinning and influence of tree size and leaf area to sapwood area ratio on water relations of Pinus ponderosa.
    Simonin K; Kolb TE; Montes-Helu M; Koch GW
    Tree Physiol; 2006 Apr; 26(4):493-503. PubMed ID: 16414928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transpiration-induced axial and radial tension gradients in trunks of Douglas-fir trees.
    Domec JC; Meinzer FC; Gartner BL; Woodruff D
    Tree Physiol; 2006 Mar; 26(3):275-84. PubMed ID: 16356900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of forest thinning on sap flow dynamics and transpiration in a Japanese cedar forest.
    Iida S; Noguchi S; Levia DF; Araki M; Nitta K; Wada S; Narita Y; Tamura H; Abe T; Kaneko T
    Sci Total Environ; 2024 Feb; 912():169060. PubMed ID: 38061642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why size matters: the interactive influences of tree diameter distribution and sap flow parameters on upscaled transpiration.
    Berry ZC; Looker N; Holwerda F; Gómez Aguilar LR; Ortiz Colin P; González Martínez T; Asbjornsen H
    Tree Physiol; 2018 Feb; 38(2):263-275. PubMed ID: 29040787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany.
    Köstner B; Falge E; Tenhunen JD
    Tree Physiol; 2002 Jun; 22(8):567-74. PubMed ID: 12045028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling Erica arborea transpiration from trees up to the stand using auxiliary micrometeorological information in a wax myrtle-tree heath cloud forest (La Gomera, Canary Islands).
    Regalado CM; Ritter A
    Tree Physiol; 2013 Sep; 33(9):973-85. PubMed ID: 24072518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diurnal and seasonal variability in radial distribution of sap flux density: Implications for estimating stand transpiration.
    Fiora A; Cescatti A
    Tree Physiol; 2006 Sep; 26(9):1217-25. PubMed ID: 16740497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus: an analysis of xylem sap flow and eddy correlation measurements.
    Köstner BM; Schulze E-; Kelliher FM; Hollinger DY; Byers JN; Hunt JE; McSeveny TM; Meserth R; Weir PL
    Oecologia; 1992 Sep; 91(3):350-359. PubMed ID: 28313542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation in the radial patterns of sap flux density in pubescent oak (Quercus pubescens) and its implications for tree and stand transpiration measurements.
    Poyatos R; Cermák J; Llorens P
    Tree Physiol; 2007 Apr; 27(4):537-48. PubMed ID: 17241996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curios relationship revealed by looking at long term data sets-The geometry and allometric scaling of diel xylem sap flux in tropical trees.
    Kunert N
    J Plant Physiol; 2016 Oct; 205():80-83. PubMed ID: 27632141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transpiration characteristics of a rubber plantation in central Cambodia.
    Kobayashi N; Kumagai T; Miyazawa Y; Matsumoto K; Tateishi M; Lim TK; Mudd RG; Ziegler AD; Giambelluca TW; Yin S
    Tree Physiol; 2014 Mar; 34(3):285-301. PubMed ID: 24646689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transpiration of urban forests in the Los Angeles metropolitan area.
    Pataki DE; McCarthy HR; Litvak E; Pincetl S
    Ecol Appl; 2011 Apr; 21(3):661-77. PubMed ID: 21639035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of water flux through tropical forest canopy trees: do universal rules apply?
    Meinzer FC; Goldstein G; Andrade JL
    Tree Physiol; 2001 Jan; 21(1):19-26. PubMed ID: 11260820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.
    Gebauer T; Horna V; Leuschner C
    Tree Physiol; 2008 Dec; 28(12):1821-30. PubMed ID: 19193565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf water maintains daytime transpiration in young Cryptomeria japonica trees.
    Himeno S; Azuma W; Gyokusen K; Ishii HR
    Tree Physiol; 2017 Oct; 37(10):1394-1403. PubMed ID: 28575486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.