These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 17241959)

  • 21. Estimating water use by sugar maple trees: considerations when using heat-pulse methods in trees with deep functional sapwood.
    Pausch RC; Grote EE; Dawson TE
    Tree Physiol; 2000 Mar; 20(4):217-227. PubMed ID: 12651458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Time lag characteristics of stem sap flow of common tree species during their growth season in Beijing downtown].
    Wang H; Ouyang ZY; Zheng H; Wang XK; Ni YM; Ren YF
    Ying Yong Sheng Tai Xue Bao; 2009 Sep; 20(9):2111-7. PubMed ID: 20030130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anatomical explanations for acute depressions in radial pattern of axial sap flow in two diffuse-porous mangrove species: implications for water use.
    Zhao H; Yang S; Guo X; Peng C; Gu X; Deng C; Chen L
    Tree Physiol; 2018 Feb; 38(2):276-286. PubMed ID: 29346677
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use.
    Ford CR; McGuire MA; Mitchell RJ; Teskey RO
    Tree Physiol; 2004 Mar; 24(3):241-9. PubMed ID: 14704134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest.
    Daley MJ; Phillips NG
    Tree Physiol; 2006 Apr; 26(4):411-9. PubMed ID: 16414920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Responses of canopy stomatal conductance of Acacia mangium forest to environmental driving factors].
    Zhao P; Rao X; Ma L; Cai X; Zeng X
    Ying Yong Sheng Tai Xue Bao; 2006 Jul; 17(7):1149-56. PubMed ID: 17044483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence.
    Angstmann JL; Ewers BE; Kwon H
    Tree Physiol; 2012 May; 32(5):599-611. PubMed ID: 22539635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Canopy transpiration of Larix principis-rupprechtii plantation and its impact factors in diffe-rent slope locations at the south side of Liupan Mountains, China.].
    Wang YN; Cao GX; Wang YH; Xu LH; Zhang WJ; Wang XJ
    Ying Yong Sheng Tai Xue Bao; 2018 May; 29(5):1503-1514. PubMed ID: 29797883
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Radial variations in xylem sap flux in a temperate red pine plantation forest.
    Bodo AV; Arain MA
    Ecol Process; 2021; 10(1):24. PubMed ID: 34722105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hawaiian native forest conserves water relative to timber plantation: species and stand traits influence water use.
    Kagawa A; Sack L; Duarte K; James S
    Ecol Appl; 2009 Sep; 19(6):1429-43. PubMed ID: 19769092
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of transpiration, sap flow and use of stored water in tropical forest canopy trees.
    Meinzer FC; James SA; Goldstein G
    Tree Physiol; 2004 Aug; 24(8):901-9. PubMed ID: 15172840
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influences of environmental factors on the radial profile of sap flux density in Fagus crenata growing at different elevations in the Naeba Mountains, Japan.
    Kubota M; Tenhunen J; Zimmerman R; Schmidt M; Adiku S; Kakubari Y
    Tree Physiol; 2005 May; 25(5):545-56. PubMed ID: 15741147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ measurement of water absorption by fine roots of three temperate trees: species differences and differential activity of superficial and deep roots.
    Leuschner C; Coners H; Icke R
    Tree Physiol; 2004 Dec; 24(12):1359-67. PubMed ID: 15465698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environmental controls on sap flow in a northern hardwood forest.
    Bovard BD; Curtis PS; Vogel CS; Su HB; Schmid HP
    Tree Physiol; 2005 Jan; 25(1):31-8. PubMed ID: 15519983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmental regulation of xylem sap flow and total conductance of Larix gmelinii trees in eastern Siberia.
    Arneth A; Kelliher FM; Bauer G; Hollinger DY; Byers JN; Hunt JE; McSeveny TM; Ziegler W; Vygodskaya NN; Milukova I; Sogachov A; Varlagin A; Schulze ED
    Tree Physiol; 1996; 16(1_2):247-255. PubMed ID: 14871769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of temporal patterns in vapor pressure deficit to explain spatial autocorrelation dynamics in tree transpiration.
    Adelman JD; Ewers BE; Mackay DS
    Tree Physiol; 2008 Apr; 28(4):647-58. PubMed ID: 18244950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Characteristics of soil moisture limitation and non-limitation in the response of sap flow to transpiration driving factors].
    Chang L; Liu MJ; Lyu JL; DU S
    Ying Yong Sheng Tai Xue Bao; 2024 Apr; 35(4):1064-1072. PubMed ID: 38884241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stomatal conductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes.
    Motzer T; Munz N; Küppers M; Schmitt D; Anhuf D
    Tree Physiol; 2005 Oct; 25(10):1283-93. PubMed ID: 16076777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes.
    Wullschleger SD; Childs KW; King AW; Hanson PJ
    Tree Physiol; 2011 Jun; 31(6):669-79. PubMed ID: 21743059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood.
    James SA; Clearwater MJ; Meinzer FC; Goldstein G
    Tree Physiol; 2002 Mar; 22(4):277-83. PubMed ID: 11874724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.