BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17242211)

  • 1. Intrastrand annealing leads to the formation of a large DNA palindrome and determines the boundaries of genomic amplification in human cancer.
    Tanaka H; Cao Y; Bergstrom DA; Kooperberg C; Tapscott SJ; Yao MC
    Mol Cell Biol; 2007 Mar; 27(6):1993-2002. PubMed ID: 17242211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short inverted repeats initiate gene amplification through the formation of a large DNA palindrome in mammalian cells.
    Tanaka H; Tapscott SJ; Trask BJ; Yao MC
    Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8772-7. PubMed ID: 12060719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large DNA palindromes as a common form of structural chromosome aberrations in human cancers.
    Tanaka H; Bergstrom DA; Yao MC; Tapscott SJ
    Hum Cell; 2006 Feb; 19(1):17-23. PubMed ID: 16643603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pattern of gene amplification is determined by the chromosomal location of hairpin-capped breaks.
    Narayanan V; Mieczkowski PA; Kim HM; Petes TD; Lobachev KS
    Cell; 2006 Jun; 125(7):1283-96. PubMed ID: 16814715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of a palindromic amplicon junction implicates microhomology-mediated end joining as a mechanism of sister chromatid fusion during gene amplification.
    Okuno Y; Hahn PJ; Gilbert DM
    Nucleic Acids Res; 2004; 32(2):749-56. PubMed ID: 14757839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Widespread and nonrandom distribution of DNA palindromes in cancer cells provides a structural platform for subsequent gene amplification.
    Tanaka H; Bergstrom DA; Yao MC; Tapscott SJ
    Nat Genet; 2005 Mar; 37(3):320-7. PubMed ID: 15711546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of palindromes as platforms for DNA amplification in breast cancer.
    Guenthoer J; Diede SJ; Tanaka H; Chai X; Hsu L; Tapscott SJ; Porter PL
    Genome Res; 2012 Feb; 22(2):232-45. PubMed ID: 21752925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and analysis of specific chromosomal region adjacent to exogenous Dhfr-amplified region in Chinese hamster ovary cell genome.
    Park JY; Takagi Y; Yamatani M; Honda K; Asakawa S; Shimizu N; Omasa T; Ohtake H
    J Biosci Bioeng; 2010 May; 109(5):504-11. PubMed ID: 20347775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-Wide Analysis of Palindrome Formation with Next-Generation Sequencing (GAPF-Seq) and a Bioinformatics Pipeline for Assessing De Novo Palindromes in Cancer Genomes.
    Murata MM; Giuliano AE; Tanaka H
    Methods Mol Biol; 2023; 2660():13-22. PubMed ID: 37191787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long palindromes formed in Streptomyces by nonrecombinational intra-strand annealing.
    Qin Z; Cohen SN
    Genes Dev; 2000 Jul; 14(14):1789-96. PubMed ID: 10898793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of large DNA palindrome formation in yeast: implications for gene amplification and genome stability in eukaryotes.
    Butler DK; Yasuda LE; Yao MC
    Cell; 1996 Dec; 87(6):1115-22. PubMed ID: 8978615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechanism of palindromic gene amplification in Saccharomyces cerevisiae.
    Rattray AJ; Shafer BK; Neelam B; Strathern JN
    Genes Dev; 2005 Jun; 19(11):1390-9. PubMed ID: 15937224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palindromes in DNA-A Risk for Genome Stability and Implications in Cancer.
    Svetec Miklenić M; Svetec IK
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33799581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Palindromes and genomic stress fractures: bracing and repairing the damage.
    Lewis SM; Coté AG
    DNA Repair (Amst); 2006 Sep; 5(9-10):1146-60. PubMed ID: 16807136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene amplification, radiation sensitivity and DNA double-strand breaks.
    Mondello C; Smirnova A; Giulotto E
    Mutat Res; 2010; 704(1-3):29-37. PubMed ID: 20093194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myc oncogene-induced genomic instability: DNA palindromes in bursal lymphomagenesis.
    Neiman PE; Elsaesser K; Loring G; Kimmel R
    PLoS Genet; 2008 Jul; 4(7):e1000132. PubMed ID: 18636108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GAP-Seq: a method for identification of DNA palindromes.
    Yang H; Volfovsky N; Rattray A; Chen X; Tanaka H; Strathern J
    BMC Genomics; 2014 May; 15(1):394. PubMed ID: 24885769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cloning of a translocation breakpoint hotspot in 22q11.
    Kurahashi H; Inagaki H; Hosoba E; Kato T; Ohye T; Kogo H; Emanuel BS
    Genome Res; 2007 Apr; 17(4):461-9. PubMed ID: 17267815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pilot study on the prevalence of DNA palindromes in breast cancer genomes.
    Subramanian S; Chaparala S; Avali V; Ganapathiraju MK
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):73. PubMed ID: 28117658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of compensatory substitution and gene evolution on the MAGEA/CSAG-palindrome of the primate X chromosomes.
    Qi Y; Lu H; Ai D
    Comput Biol Chem; 2013 Feb; 42():18-22. PubMed ID: 23257410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.