BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 17242351)

  • 1. Ligand configurational entropy and protein binding.
    Chang CE; Chen W; Gilson MK
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1534-9. PubMed ID: 17242351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating the energetics of entropically driven protein-ligand association: calculations of absolute binding free energy and entropy.
    Deng NJ; Zhang P; Cieplak P; Lai L
    J Phys Chem B; 2011 Oct; 115(41):11902-10. PubMed ID: 21899337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entropic cost of protein-ligand binding and its dependence on the entropy in solution.
    Irudayam SJ; Henchman RH
    J Phys Chem B; 2009 Apr; 113(17):5871-84. PubMed ID: 19351118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of cyclodextrin binding affinities: energy, entropy, and implications for drug design.
    Chen W; Chang CE; Gilson MK
    Biophys J; 2004 Nov; 87(5):3035-49. PubMed ID: 15339804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Computation of Small-Molecule Configurational Binding Entropy and Free Energy Changes by Ensemble Enumeration.
    Silver NW; King BM; Nalam MN; Cao H; Ali A; Kiran Kumar Reddy GS; Rana TM; Schiffer CA; Tidor B
    J Chem Theory Comput; 2013 Nov; 9(11):5098-5115. PubMed ID: 24250277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and thermodynamic basis of amprenavir/darunavir and atazanavir resistance in HIV-1 protease with mutations at residue 50.
    Mittal S; Bandaranayake RM; King NM; Prabu-Jeyabalan M; Nalam MN; Nalivaika EA; Yilmaz NK; Schiffer CA
    J Virol; 2013 Apr; 87(8):4176-84. PubMed ID: 23365446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural parameterization of the binding enthalpy of small ligands.
    Luque I; Freire E
    Proteins; 2002 Nov; 49(2):181-90. PubMed ID: 12210999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease.
    Kar P; Lipowsky R; Knecht V
    J Phys Chem B; 2013 May; 117(19):5793-805. PubMed ID: 23614718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations.
    Verkhivker GM
    Pac Symp Biocomput; 1996; ():638-52. PubMed ID: 9390264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overcoming drug resistance in HIV-1 chemotherapy: the binding thermodynamics of Amprenavir and TMC-126 to wild-type and drug-resistant mutants of the HIV-1 protease.
    Ohtaka H; Velázquez-Campoy A; Xie D; Freire E
    Protein Sci; 2002 Aug; 11(8):1908-16. PubMed ID: 12142445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculations of protein-ligand binding entropy of relative and overall molecular motions.
    Ruvinsky AM
    J Comput Aided Mol Des; 2007 Jul; 21(7):361-70. PubMed ID: 17503189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empirical free energy calculations of ligand-protein crystallographic complexes. I. Knowledge-based ligand-protein interaction potentials applied to the prediction of human immunodeficiency virus 1 protease binding affinity.
    Verkhivker G; Appelt K; Freer ST; Villafranca JE
    Protein Eng; 1995 Jul; 8(7):677-91. PubMed ID: 8577696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Approximation of Ligand Rotational and Translational Entropy Changes upon Binding for Use in MM-PBSA Calculations.
    Ben-Shalom IY; Pfeiffer-Marek S; Baringhaus KH; Gohlke H
    J Chem Inf Model; 2017 Feb; 57(2):170-189. PubMed ID: 27996253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance.
    Hou T; Yu R
    J Med Chem; 2007 Mar; 50(6):1177-88. PubMed ID: 17300185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study.
    Leonis G; Steinbrecher T; Papadopoulos MG
    J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing end-point methods for absolute binding free energy calculation using the Boltzmann-quasiharmonic model.
    Wickstrom L; Gallicchio E; Chen L; Kurtzman T; Deng N
    Phys Chem Chem Phys; 2022 Mar; 24(10):6037-6052. PubMed ID: 35212338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-entropy prediction of octanol-water logP of SAMPL7 N-acyl sulfonamide bioisosters.
    Falcioni F; Kalayan J; Henchman RH
    J Comput Aided Mol Des; 2021 Jul; 35(7):831-840. PubMed ID: 34244906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint X-ray/neutron crystallographic study of HIV-1 protease with clinical inhibitor amprenavir: insights for drug design.
    Weber IT; Waltman MJ; Mustyakimov M; Blakeley MP; Keen DA; Ghosh AK; Langan P; Kovalevsky AY
    J Med Chem; 2013 Jul; 56(13):5631-5. PubMed ID: 23772563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetic basis for drug resistance of HIV-1 protease mutants against amprenavir.
    Kar P; Knecht V
    J Comput Aided Mol Des; 2012 Feb; 26(2):215-32. PubMed ID: 22350569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases.
    Stoica I; Sadiq SK; Coveney PV
    J Am Chem Soc; 2008 Feb; 130(8):2639-48. PubMed ID: 18225901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.