These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 17242491)

  • 1. Oxygen uptake kinetics: Why are they so slow? And what do they tell us?
    Grassi B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():53-65. PubMed ID: 17242491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed metabolic activation of oxidative phosphorylation in skeletal muscle at exercise onset.
    Grassi B
    Med Sci Sports Exerc; 2005 Sep; 37(9):1567-73. PubMed ID: 16177610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.
    Zoladz JA; Korzeniewski B; Grassi B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():67-84. PubMed ID: 17242492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exertional oxygen uptake kinetics: a stamen of stamina?
    Whipp BJ; Rossiter HB; Ward SA
    Biochem Soc Trans; 2002 Apr; 30(2):237-47. PubMed ID: 12023858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular correlates for maximal oxygen uptake and type 1 fibers.
    Parikh H; Nilsson E; Ling C; Poulsen P; Almgren P; Nittby H; Eriksson KF; Vaag A; Groop LC
    Am J Physiol Endocrinol Metab; 2008 Jun; 294(6):E1152-9. PubMed ID: 18445752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of skeletal muscle mitochondria respiration by adenine nucleotides: differential effect of ADP and ATP according to muscle contractile type in pigs.
    Gueguen N; Lefaucheur L; Fillaut M; Vincent A; Herpin P
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Feb; 140(2):287-97. PubMed ID: 15649776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.
    Korzeniewski B; Zoladz JA
    Biochem J; 2004 May; 379(Pt 3):703-10. PubMed ID: 14744260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of haemoglobin mass on VO(2)max following normobaric 'live high-train low' in endurance-trained athletes.
    Robach P; Siebenmann C; Jacobs RA; Rasmussen P; Nordsborg N; Pesta D; Gnaiger E; Díaz V; Christ A; Fiedler J; Crivelli N; Secher NH; Pichon A; Maggiorini M; Lundby C
    Br J Sports Med; 2012 Sep; 46(11):822-7. PubMed ID: 22790809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinase-specific responsiveness to incremental contractile activity in skeletal muscle with low and high mitochondrial content.
    Ljubicic V; Hood DA
    Am J Physiol Endocrinol Metab; 2008 Jul; 295(1):E195-204. PubMed ID: 18492778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle.
    Korzeniewski B; Liguzinski P
    Biophys Chem; 2004 Jul; 110(1-2):147-69. PubMed ID: 15223151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative capacity correlates with muscle mutation load in mitochondrial myopathy.
    Jeppesen TD; Schwartz M; Olsen DB; Vissing J
    Ann Neurol; 2003 Jul; 54(1):86-92. PubMed ID: 12838523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of respiration kinetics and protein composition of skinned fibers from various types of rat muscle.
    Voloshchuk SG; Belikova YO; Klyushnik TP; Benevolensky DS; Saks VA
    Biochemistry (Mosc); 1998 Feb; 63(2):155-8. PubMed ID: 9526107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology.
    Gnaiger E
    Int J Biochem Cell Biol; 2009 Oct; 41(10):1837-45. PubMed ID: 19467914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy metabolism in muscle approaching maximal rates of oxygen utilization.
    Wilson DF
    Med Sci Sports Exerc; 1995 Jan; 27(1):54-9. PubMed ID: 7898338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen uptake dynamics: from muscle to mouth--an introduction to the symposium.
    Jones AM; Poole DC
    Med Sci Sports Exerc; 2005 Sep; 37(9):1542-50. PubMed ID: 16177607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle-energetic and cardio-pulmonary determinants of exercise tolerance in humans: Muscle-energetic and cardio-pulmonary determinants of exercise tolerance in humans.
    Ward SA
    Exp Physiol; 2007 Mar; 92(2):321-2. PubMed ID: 17360933
    [No Abstract]   [Full Text] [Related]  

  • 17. Slow component of VO2 kinetics: mechanistic bases and practical applications.
    Jones AM; Grassi B; Christensen PM; Krustrup P; Bangsbo J; Poole DC
    Med Sci Sports Exerc; 2011 Nov; 43(11):2046-62. PubMed ID: 21552162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of lipid oxidation during exercise: role of energy state and mitochondrial factors.
    Sahlin K; Harris RC
    Acta Physiol (Oxf); 2008 Dec; 194(4):283-91. PubMed ID: 18557841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of oxygen consumption on-kinetics during exercise: implications for patients with heart failure.
    Arena R; Humphrey R; Peberdy MA
    J Card Fail; 2001 Dec; 7(4):302-10. PubMed ID: 11782852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen uptake kinetics: old and recent lessons from experiments on isolated muscle in situ.
    Grassi B
    Eur J Appl Physiol; 2003 Oct; 90(3-4):242-9. PubMed ID: 14556076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.