BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 17242491)

  • 1. Oxygen uptake kinetics: Why are they so slow? And what do they tell us?
    Grassi B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():53-65. PubMed ID: 17242491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed metabolic activation of oxidative phosphorylation in skeletal muscle at exercise onset.
    Grassi B
    Med Sci Sports Exerc; 2005 Sep; 37(9):1567-73. PubMed ID: 16177610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.
    Zoladz JA; Korzeniewski B; Grassi B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():67-84. PubMed ID: 17242492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exertional oxygen uptake kinetics: a stamen of stamina?
    Whipp BJ; Rossiter HB; Ward SA
    Biochem Soc Trans; 2002 Apr; 30(2):237-47. PubMed ID: 12023858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular correlates for maximal oxygen uptake and type 1 fibers.
    Parikh H; Nilsson E; Ling C; Poulsen P; Almgren P; Nittby H; Eriksson KF; Vaag A; Groop LC
    Am J Physiol Endocrinol Metab; 2008 Jun; 294(6):E1152-9. PubMed ID: 18445752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of skeletal muscle mitochondria respiration by adenine nucleotides: differential effect of ADP and ATP according to muscle contractile type in pigs.
    Gueguen N; Lefaucheur L; Fillaut M; Vincent A; Herpin P
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Feb; 140(2):287-97. PubMed ID: 15649776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.
    Korzeniewski B; Zoladz JA
    Biochem J; 2004 May; 379(Pt 3):703-10. PubMed ID: 14744260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of haemoglobin mass on VO(2)max following normobaric 'live high-train low' in endurance-trained athletes.
    Robach P; Siebenmann C; Jacobs RA; Rasmussen P; Nordsborg N; Pesta D; Gnaiger E; Díaz V; Christ A; Fiedler J; Crivelli N; Secher NH; Pichon A; Maggiorini M; Lundby C
    Br J Sports Med; 2012 Sep; 46(11):822-7. PubMed ID: 22790809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinase-specific responsiveness to incremental contractile activity in skeletal muscle with low and high mitochondrial content.
    Ljubicic V; Hood DA
    Am J Physiol Endocrinol Metab; 2008 Jul; 295(1):E195-204. PubMed ID: 18492778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle.
    Korzeniewski B; Liguzinski P
    Biophys Chem; 2004 Jul; 110(1-2):147-69. PubMed ID: 15223151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative capacity correlates with muscle mutation load in mitochondrial myopathy.
    Jeppesen TD; Schwartz M; Olsen DB; Vissing J
    Ann Neurol; 2003 Jul; 54(1):86-92. PubMed ID: 12838523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of respiration kinetics and protein composition of skinned fibers from various types of rat muscle.
    Voloshchuk SG; Belikova YO; Klyushnik TP; Benevolensky DS; Saks VA
    Biochemistry (Mosc); 1998 Feb; 63(2):155-8. PubMed ID: 9526107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology.
    Gnaiger E
    Int J Biochem Cell Biol; 2009 Oct; 41(10):1837-45. PubMed ID: 19467914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy metabolism in muscle approaching maximal rates of oxygen utilization.
    Wilson DF
    Med Sci Sports Exerc; 1995 Jan; 27(1):54-9. PubMed ID: 7898338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen uptake dynamics: from muscle to mouth--an introduction to the symposium.
    Jones AM; Poole DC
    Med Sci Sports Exerc; 2005 Sep; 37(9):1542-50. PubMed ID: 16177607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle-energetic and cardio-pulmonary determinants of exercise tolerance in humans: Muscle-energetic and cardio-pulmonary determinants of exercise tolerance in humans.
    Ward SA
    Exp Physiol; 2007 Mar; 92(2):321-2. PubMed ID: 17360933
    [No Abstract]   [Full Text] [Related]  

  • 17. Slow component of VO2 kinetics: mechanistic bases and practical applications.
    Jones AM; Grassi B; Christensen PM; Krustrup P; Bangsbo J; Poole DC
    Med Sci Sports Exerc; 2011 Nov; 43(11):2046-62. PubMed ID: 21552162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of lipid oxidation during exercise: role of energy state and mitochondrial factors.
    Sahlin K; Harris RC
    Acta Physiol (Oxf); 2008 Dec; 194(4):283-91. PubMed ID: 18557841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of oxygen consumption on-kinetics during exercise: implications for patients with heart failure.
    Arena R; Humphrey R; Peberdy MA
    J Card Fail; 2001 Dec; 7(4):302-10. PubMed ID: 11782852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen uptake kinetics: old and recent lessons from experiments on isolated muscle in situ.
    Grassi B
    Eur J Appl Physiol; 2003 Oct; 90(3-4):242-9. PubMed ID: 14556076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.