These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 17242570)

  • 1. SPECT-CT images of an ocular coralline hydroxyapatite implant visible on bone scintigraphy.
    Domange-Testard A; Papathanassiou D; Menéroux B; Amans J; Liehn JC
    Clin Nucl Med; 2007 Feb; 32(2):132-4. PubMed ID: 17242570
    [No Abstract]   [Full Text] [Related]  

  • 2. Vascularization of coralline versus synthetic hydroxyapatite orbital implants assessed by gadolinium enhanced magnetic resonance imaging.
    Celik T; Yuksel D; Kosker M; Kasim R; Simsek S
    Curr Eye Res; 2015 Mar; 40(3):346-53. PubMed ID: 24871378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scintigraphic evaluation of coralline hydroxyapatite ocular implants. Case reports on the use of planar and SPECT bone scintigraphy.
    Toney MA; Heironimus JD; Rivera D; Hollsten D
    Clin Nucl Med; 1993 Jan; 18(1):50-2. PubMed ID: 8380761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New routine for nuclear medicine technologists to determine when to add SPECT/CT to a whole-body bone scan.
    Shafi A; Thorsson O; Edenbrandt L
    J Nucl Med Technol; 2014 Mar; 42(1):28-32. PubMed ID: 24470596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different fibrovascularization rate between coralline hydroxyapatite and high density porous polyethylene (Medpore) measured by 99mTc-MDP bone scintigraphy 6 months after intraorbital implantation.
    Pan MH; Wu YW; Yen RF; Tzen KY; Liao SL; Kao CH
    Nucl Med Commun; 2003 Dec; 24(12):1237-41. PubMed ID: 14627850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Motility and lid changes with coralline hydroxyapatite orbital implants and cryolite glass ocular prostheses].
    Thiesmann R
    Ophthalmologe; 2018 Sep; 115(9):794-796. PubMed ID: 29744582
    [No Abstract]   [Full Text] [Related]  

  • 7. Osseous metaplasia with functioning bone marrow in hydroxyapatite orbital implants.
    Lew H; Shin DH; Lee SY; Kim SJ; Jang JW
    Graefes Arch Clin Exp Ophthalmol; 2000 Apr; 238(4):366-8. PubMed ID: 10853938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The usefulness of bone scintigraphy with SPECT images for detection of pulmonary metastases from osteosarcoma.
    Pevarski DJ; Drane WE; Scarborough MT
    AJR Am J Roentgenol; 1998 Feb; 170(2):319-22. PubMed ID: 9456937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method of cranioplasty using coralline hydroxyapatite.
    Choi SH; Levy ML; McComb JG
    Pediatr Neurosurg; 1998 Dec; 29(6):324-7. PubMed ID: 9973681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New workflows and algorithms of bone scintigraphy based on SPECT-CT.
    Bandi P; Zsoter N; Wirth A; Luetzen U; Derlin T; Papp L
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5971-4. PubMed ID: 23367289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyapatite ceramics and the nature of the bone-ceramic interface.
    Ricci JL; Spivak JM; Alexander H; Blumenthal NC; Parsons JR
    Bull Hosp Jt Dis Orthop Inst; 1989; 49(2):178-91. PubMed ID: 2557940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Repairing the defect of benign bone tumor with the coralline hydroxyapatite].
    Fu K; Meng ZB; Li J; Li HC
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2008 May; 33(5):421-4. PubMed ID: 18544846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scintigraphic studies to evaluate stability of ceramics (hydroxyapatite) in bone replacement.
    Patka P; Den Hollander W; Den Otter G; Heidendal AK; De Groot K
    J Nucl Med; 1985 Mar; 26(3):263-71. PubMed ID: 3156222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The research of degradability of a novel biodegradable coralline hydroxyapatite after implanted into rabbit.
    Ning Y; Wei T; Defu C; Yonggang X; Da H; Dafu C; Lei S; Zhizhong G
    J Biomed Mater Res A; 2009 Mar; 88(3):741-6. PubMed ID: 18357581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients.
    Römer W; Nömayr A; Uder M; Bautz W; Kuwert T
    J Nucl Med; 2006 Jul; 47(7):1102-6. PubMed ID: 16818944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Longitudinal in vivo evaluation of bone regeneration by combined measurement of multi-pinhole SPECT and micro-CT for tissue engineering.
    Lienemann PS; Metzger S; Kiveliö AS; Blanc A; Papageorgiou P; Astolfo A; Pinzer BR; Cinelli P; Weber FE; Schibli R; Béhé M; Ehrbar M
    Sci Rep; 2015 May; 5():10238. PubMed ID: 25989250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SPECT/multislice low-dose CT: a clinically relevant constituent in the imaging algorithm of nononcologic patients referred for bone scintigraphy.
    Even-Sapir E; Flusser G; Lerman H; Lievshitz G; Metser U
    J Nucl Med; 2007 Feb; 48(2):319-24. PubMed ID: 17268031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Clinical study of bioactive glass ceramics as orbital implants].
    Xu X; Huang Z; Wang C
    Hunan Yi Ke Da Xue Xue Bao; 1997; 22(5):440-2. PubMed ID: 10073031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incidental detection of rupture of substitute urinary bladder on bone scan.
    Yamanouchi K; Toyama H; Maruyama T; Hoshinaga K; Katada K
    Clin Nucl Med; 2013 Jul; 38(7):543-5. PubMed ID: 23579969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of Tc-99m (V) DMSA scintigraphy in the diagnosis and follow-up of lung cancer lesions.
    Ergün EL; Kara PO; Gedik GK; Kars A; Türker A; Caner B
    Ann Nucl Med; 2007 Jul; 21(5):275-83. PubMed ID: 17634845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.