BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 17242947)

  • 1. The influence of acute and 23 days of intermittent hypoxic exposures on the exercise-induced forehead sweating response.
    Kacin A; Golja P; Eiken O; Tipton MJ; Mekjavic IB
    Eur J Appl Physiol; 2007 Mar; 99(5):557-66. PubMed ID: 17242947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermittent normobaric hypoxic exposures at rest: effects on performance in normoxia and hypoxia.
    Mekjavic IB; Debevec T; Amon M; Keramidas ME; Kounalakis SN
    Aviat Space Environ Med; 2012 Oct; 83(10):942-50. PubMed ID: 23066615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermittent hypoxic exposure does not improve sleep at 4300 m.
    Jones JE; Muza SR; Fulco CS; Beidleman BA; Tapia ML; Cymerman A
    High Alt Med Biol; 2008; 9(4):281-7. PubMed ID: 19115911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise thermoregulatory responses following a 28-day sleep-high train-low regimen.
    Kounalakis SN; Eiken O; Mekjavic IB
    Eur J Appl Physiol; 2012 Nov; 112(11):3881-91. PubMed ID: 22407329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermittent hypoxic exposure does not improve endurance performance at altitude.
    Beidleman BA; Muza SR; Fulco CS; Jones JE; Lammi E; Staab JE; Cymerman A
    Med Sci Sports Exerc; 2009 Jun; 41(6):1317-25. PubMed ID: 19461532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local sweating on the forehead, but not forearm, is influenced by aerobic fitness independently of heat balance requirements during exercise.
    Cramer MN; Bain AR; Jay O
    Exp Physiol; 2012 May; 97(5):572-82. PubMed ID: 22227199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic adaptations may counteract ventilatory adaptations of intermittent hypoxic exposure during submaximal exercise at altitudes up to 4000 m.
    Faulhaber M; Dünnwald T; Gatterer H; Bernardi L; Burtscher M
    PLoS One; 2012; 7(11):e49953. PubMed ID: 23166803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peak oxygen uptake and regional oxygenation in response to a 10-day confinement to normobaric hypoxia.
    Kounalakis SN; Keramidas ME; Eiken O; Jaki Mekjavic P; Mekjavic IB
    Scand J Med Sci Sports; 2013 Aug; 23(4):e233-45. PubMed ID: 23489383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current trends in altitude training.
    Wilber RL
    Sports Med; 2001; 31(4):249-65. PubMed ID: 11310547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Two Short-Term, Intermittent Hypoxic Training Protocols on the Finger Temperature Response to Local Cold Stress.
    Keramidas ME; Kounalakis SN; Eiken O; Mekjavic IB
    High Alt Med Biol; 2015 Sep; 16(3):251-60. PubMed ID: 26200122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute hypoxia and exercise-induced blood oxidative stress.
    McGinnis G; Kliszczewiscz B; Barberio M; Ballmann C; Peters B; Slivka D; Dumke C; Cuddy J; Hailes W; Ruby B; Quindry J
    Int J Sport Nutr Exerc Metab; 2014 Dec; 24(6):684-93. PubMed ID: 24667140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. No ergogenic effects of a 10-day combined heat and hypoxic acclimation on aerobic performance in normoxic thermoneutral or hot conditions.
    Sotiridis A; Miliotis P; Ciuha U; Koskolou M; Mekjavic IB
    Eur J Appl Physiol; 2019 Dec; 119(11-12):2513-2527. PubMed ID: 31555926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does intermittent hypoxia increase erythropoiesis in professional cyclists during a 3-week race?
    Villa JG; Lucía A; Marroyo JA; Avila C; Jiménez F; Garcia-López J; Earnest CP; Córdova A
    Can J Appl Physiol; 2005 Feb; 30(1):61-73. PubMed ID: 15855683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term arrival strategies for endurance exercise performance at moderate altitude.
    Foss JL; Constantini K; Mickleborough TD; Chapman RF
    J Appl Physiol (1985); 2017 Nov; 123(5):1258-1265. PubMed ID: 28818999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermittent hypoxia improves endurance performance and submaximal exercise efficiency.
    Katayama K; Matsuo H; Ishida K; Mori S; Miyamura M
    High Alt Med Biol; 2003; 4(3):291-304. PubMed ID: 14561235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Use of Simulated Altitude Techniques for Beneficial Cardiovascular Health Outcomes in Nonathletic, Sedentary, and Clinical Populations: A Literature Review.
    Lizamore CA; Hamlin MJ
    High Alt Med Biol; 2017 Dec; 18(4):305-321. PubMed ID: 28846046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermittent hypoxia increases ventilation and Sa(O2) during hypoxic exercise and hypoxic chemosensitivity.
    Katayama K; Sato Y; Morotome Y; Shima N; Ishida K; Mori S; Miyamura M
    J Appl Physiol (1985); 2001 Apr; 90(4):1431-40. PubMed ID: 11247944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Military applications of hypoxic training for high-altitude operations.
    Muza SR
    Med Sci Sports Exerc; 2007 Sep; 39(9):1625-31. PubMed ID: 17805096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of a Live-high Train-high exercise regimen on behavioural temperature regulation.
    Morrison SA; Ciuha U; Zavec-Pavlinić D; Eiken O; Mekjavic IB
    Eur J Appl Physiol; 2017 Feb; 117(2):255-265. PubMed ID: 28025662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of repeated normobaric hypoxia exposures during sleep on acute mountain sickness, exercise performance, and sleep during exposure to terrestrial altitude.
    Fulco CS; Muza SR; Beidleman BA; Demes R; Staab JE; Jones JE; Cymerman A
    Am J Physiol Regul Integr Comp Physiol; 2011 Feb; 300(2):R428-36. PubMed ID: 21123763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.