BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17243005)

  • 1. Surface modification of Ti45Nb alloy by immobilization of RGD peptide via self assembled monolayer.
    Zorn G; Gotman I; Gutmanas EY; Adadi R; Sukenik CN
    J Mater Sci Mater Med; 2007 Jul; 18(7):1309-15. PubMed ID: 17243005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced osteoblast functions on RGD immobilized surface.
    Huang H; Zhao Y; Liu Z; Zhang Y; Zhang H; Fu T; Ma X
    J Oral Implantol; 2003; 29(2):73-9. PubMed ID: 12760450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion.
    Swan EE; Popat KC; Desai TA
    Biomaterials; 2005 May; 26(14):1969-76. PubMed ID: 15576171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro osteoblast-like cell proliferation on nano-hydroxyapatite coatings with different morphologies on a titanium-niobium shape memory alloy.
    Xiong J; Li Y; Hodgson PD; Wen C
    J Biomed Mater Res A; 2010 Dec; 95(3):766-73. PubMed ID: 20725978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of irradiation modification and RGD sequence adsorption on the response of human osteoblasts to polycaprolactone.
    Marletta G; Ciapetti G; Satriano C; Pagani S; Baldini N
    Biomaterials; 2005 Aug; 26(23):4793-804. PubMed ID: 15763259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low elastic modulus Ti-Nb-Hf alloy bioactivated with an elastin-like protein-based polymer enhances osteoblast cell adhesion and spreading.
    González M; Salvagni E; Rodríguez-Cabello JC; Rupérez E; Gil FJ; Peña J; Manero JM
    J Biomed Mater Res A; 2013 Mar; 101(3):819-26. PubMed ID: 22962002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrosion behavior of a low modulus beta-Ti-45%Nb alloy for use in medical implants.
    Godley R; Starosvetsky D; Gotman I
    J Mater Sci Mater Med; 2006 Jan; 17(1):63-7. PubMed ID: 16389473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of anodized titanium with Arg-Gly-Asp (RGD) peptide immobilized via chemical grafting or physical adsorption on bone cell adhesion and differentiation.
    Ryu JJ; Park K; Kim HS; Jeong CM; Huh JB
    Int J Oral Maxillofac Implants; 2013; 28(4):963-72. PubMed ID: 23869353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of heat treatment and oxygen doping on the mechanical properties and biocompatibility of titanium-niobium binary alloys.
    da Silva LM; Claro AP; Donato TA; Arana-Chavez VE; Moraes JC; Buzalaf MA; Grandini CR
    Artif Organs; 2011 May; 35(5):516-21. PubMed ID: 21595721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering.
    Zhang L; Rakotondradany F; Myles AJ; Fenniri H; Webster TJ
    Biomaterials; 2009 Mar; 30(7):1309-20. PubMed ID: 19073342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison between RGD-peptide-modified titanium and borosilicate surfaces.
    Senyah N; Hildebrand G; Liefeith K
    Anal Bioanal Chem; 2005 Nov; 383(5):758-62. PubMed ID: 16151591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.
    Li X; Chen T; Hu J; Li S; Zou Q; Li Y; Jiang N; Li H; Li J
    Colloids Surf B Biointerfaces; 2016 Aug; 144():265-275. PubMed ID: 27100853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: a cell morphology study.
    Schuler M; Owen GR; Hamilton DW; de Wild M; Textor M; Brunette DM; Tosatti SG
    Biomaterials; 2006 Jul; 27(21):4003-15. PubMed ID: 16574219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biocompatibility of silicon containing micro-arc oxidation coated magnesium alloy ZK60 with osteoblasts cultured in vitro].
    Yang X; Yin Q; Zhang Y; Li M; Lan G; Lin X; Tan L; Yang K
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 May; 27(5):612-8. PubMed ID: 23879103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblast cell behavior on the new beta-type Ti-25Ta-25Nb alloy.
    Cimpean A; Mitran V; Ciofrangeanu CM; Galateanu B; Bertrand E; Gordin DM; Iordachescu D; Gloriant T
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1554-63. PubMed ID: 24364960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports.
    Petrie TA; Capadona JR; Reyes CD; García AJ
    Biomaterials; 2006 Nov; 27(31):5459-70. PubMed ID: 16846640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased osteoblast adhesion on nanoparticulate crystalline hydroxyapatite functionalized with KRSR.
    Nelson M; Balasundaram G; Webster TJ
    Int J Nanomedicine; 2006; 1(3):339-49. PubMed ID: 17717974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RGD-grafted thermoreversible polymers to facilitate attachment of BMP-2 responsive C2C12 cells.
    Smith E; Yang J; McGann L; Sebald W; Uludag H
    Biomaterials; 2005 Dec; 26(35):7329-38. PubMed ID: 16019067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic implant coatings.
    Eisenbarth E; Velten D; Breme J
    Biomol Eng; 2007 Feb; 24(1):27-32. PubMed ID: 16828342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delicate refinement of surface nanotopography by adjusting TiO2 coating chemical composition for enhanced interfacial biocompatibility.
    Zhao X; Wang G; Zheng H; Lu Z; Zhong X; Cheng X; Zreiqat H
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8203-9. PubMed ID: 23957368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.