BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17243005)

  • 21. RGD nanodomains grafting onto titanium surface.
    Forget G; Latxague L; Héroguez V; Labrugère C; Durrieu MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5107-10. PubMed ID: 18003155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cyclo-(DfKRG) peptide grafting onto Ti-6Al-4V: physical characterization and interest towards human osteoprogenitor cells adhesion.
    Porté-Durrieu MC; Guillemot F; Pallu S; Labrugère C; Brouillaud B; Bareille R; Amédée J; Barthe N; Dard M; Baquey Ch
    Biomaterials; 2004 Aug; 25(19):4837-46. PubMed ID: 15120531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanohydroxyapatite coating on a titanium-niobium alloy by a hydrothermal process.
    Xiong J; Li Y; Hodgson PD; Wen C
    Acta Biomater; 2010 Apr; 6(4):1584-90. PubMed ID: 19836001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Osteoblast interaction with DLC-coated Si substrates.
    Chai F; Mathis N; Blanchemain N; Meunier C; Hildebrand HF
    Acta Biomater; 2008 Sep; 4(5):1369-81. PubMed ID: 18495562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biofunctionalization strategies on tantalum-based materials for osseointegrative applications.
    Mas-Moruno C; Garrido B; Rodriguez D; Ruperez E; Gil FJ
    J Mater Sci Mater Med; 2015 Feb; 26(2):109. PubMed ID: 25665847
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ectopic bone formation in rat marrow stromal cell/titanium fiber mesh scaffold constructs: effect of initial cell phenotype.
    Holtorf HL; Jansen JA; Mikos AG
    Biomaterials; 2005 Nov; 26(31):6208-16. PubMed ID: 15921737
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.
    Mendes MW; Ágreda CG; Bressiani AH; Bressiani JC
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():671-7. PubMed ID: 27040264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the role of Nb-related sites of an oxidized β-TiNb alloy surface in its interaction with osteoblast-like MG-63 cells.
    Jirka I; Vandrovcová M; Frank O; Tolde Z; Plšek J; Luxbacher T; Bačáková L; Starý V
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1636-45. PubMed ID: 23827618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Osseointegration of chitosan coated porous titanium alloy implant by reactive oxygen species-mediated activation of the PI3K/AKT pathway under diabetic conditions.
    Li X; Ma XY; Feng YF; Ma ZS; Wang J; Ma TC; Qi W; Lei W; Wang L
    Biomaterials; 2015 Jan; 36():44-54. PubMed ID: 25308520
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of surface energy of titanium-zirconium alloy on osteoblast cell functions in vitro.
    Sista S; Wen C; Hodgson PD; Pande G
    J Biomed Mater Res A; 2011 Apr; 97(1):27-36. PubMed ID: 21308982
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces.
    Echeverry-Rendón M; Galvis O; Quintero Giraldo D; Pavón J; López-Lacomba JL; Jiménez-Piqué E; Anglada M; Robledo SM; Castaño JG; Echeverría F
    J Mater Sci Mater Med; 2015 Feb; 26(2):72. PubMed ID: 25631270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immobilization of specific proteins to titanium surface using self-assembled monolayer technique.
    Tack L; Schickle K; Böke F; Fischer H
    Dent Mater; 2015 Oct; 31(10):1169-79. PubMed ID: 26188646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering.
    Liu X; Won Y; Ma PX
    Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface treatment of titanium for RD immobilization.
    Rawle CA; Mante F
    Penn Dent J (Phila); 2003; 103():8. PubMed ID: 15481584
    [No Abstract]   [Full Text] [Related]  

  • 35. Cyclo-DfKRG peptide modulates in vitro and in vivo behavior of human osteoprogenitor cells on titanium alloys.
    Pallu S; Fricain JC; Bareille R; Bourget C; Dard M; Sewing A; Amédée J
    Acta Biomater; 2009 Nov; 5(9):3581-92. PubMed ID: 19467347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Covalent functionalization of NiTi surfaces with bioactive peptide amphiphile nanofibers.
    Sargeant TD; Rao MS; Koh CY; Stupp SI
    Biomaterials; 2008 Mar; 29(8):1085-98. PubMed ID: 18083225
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RGD-containing peptide GCRGYGRGDSPG reduces enhancement of osteoblast differentiation by poly(L-lysine)-graft-poly(ethylene glycol)-coated titanium surfaces.
    Tosatti S; Schwartz Z; Campbell C; Cochran DL; VandeVondele S; Hubbell JA; Denzer A; Simpson J; Wieland M; Lohmann CH; Textor M; Boyan BD
    J Biomed Mater Res A; 2004 Mar; 68(3):458-72. PubMed ID: 14762925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contact profilometry and correspondence analysis to correlate surface properties and cell adhesion in vitro of uncoated and coated Ti and Ti6Al4V disks.
    Bagno A; Genovese M; Luchini A; Dettin M; Conconi MT; Menti AM; Parnigotto PP; Di Bello C
    Biomaterials; 2004 May; 25(12):2437-45. PubMed ID: 14741609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study on the use of 3-aminopropyltriethoxysilane and 3-chloropropyltriethoxysilane to surface biochemical modification of a novel low elastic modulus Ti-Nb-Hf alloy.
    Paredes V; Salvagni E; Rodríguez-Castellon E; Gil FJ; Manero JM
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):495-502. PubMed ID: 24910134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.