BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

645 related articles for article (PubMed ID: 17243146)

  • 21. Fed-batch cultivation of Saccharomyces cerevisiae on lignocellulosic hydrolyzate.
    Petersson A; Lidén G
    Biotechnol Lett; 2007 Feb; 29(2):219-25. PubMed ID: 17091372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling of Xanthophyllomyces dendrorhous growth on glucose and overflow metabolism in batch and fed-batch cultures for astaxanthin production.
    Liu YS; Wu JY
    Biotechnol Bioeng; 2008 Dec; 101(5):996-1004. PubMed ID: 18683256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses.
    Unrean P; Nguyen NH
    Appl Biochem Biotechnol; 2013 Mar; 169(6):1895-909. PubMed ID: 23344940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach.
    Jin YS; Alper H; Yang YT; Stephanopoulos G
    Appl Environ Microbiol; 2005 Dec; 71(12):8249-56. PubMed ID: 16332810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
    Roca C; Haack MB; Olsson L
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):578-83. PubMed ID: 12925863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generally applicable fed-batch culture concept based on the detection of metabolic state by on-line balancing.
    Jobé AM; Herwig C; Surzyn M; Walker B; Marison I; von Stockar U
    Biotechnol Bioeng; 2003 Jun; 82(6):627-39. PubMed ID: 12673762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae.
    Casey E; Sedlak M; Ho NW; Mosier NS
    FEMS Yeast Res; 2010 Jun; 10(4):385-93. PubMed ID: 20402796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fed-batch cultivation of Saccharomyces cerevisiae in a hyperbaric bioreactor.
    Belo I; Pinheiro R; Mota M
    Biotechnol Prog; 2003; 19(2):665-71. PubMed ID: 12675615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Progress in the pathway engineering of ethanol fermentation from xylose utilising recombinant Saccharomyces cerevisiae].
    Shen Y; Wang Y; Bao XM; Qu YB
    Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):636-40. PubMed ID: 15969099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures.
    Hanly TJ; Urello M; Henson MA
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2529-41. PubMed ID: 22005741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol.
    Saleh AA; Watanabe S; Annaluru N; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):279-80. PubMed ID: 17150926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled pilot development unit-scale fed-batch cultivation of yeast on spruce hydrolysates.
    Rudolf A; Lequeux G; Lidén G
    Biotechnol Prog; 2007; 23(2):351-8. PubMed ID: 17330957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122.
    Gonzalez R; Andrews BA; Molitor J; Asenjo JA
    Biotechnol Bioeng; 2003 Apr; 82(2):152-69. PubMed ID: 12584757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling of yeast metabolism and process dynamics in batch fermentation.
    Sainz J; Pizarro F; Pérez-Correa JR; Agosin E
    Biotechnol Bioeng; 2003 Mar; 81(7):818-28. PubMed ID: 12557315
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization.
    Madhavan A; Tamalampudi S; Srivastava A; Fukuda H; Bisaria VS; Kondo A
    Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Preliminary proteome analysis for Saccharomyces cerevisiae under different culturing conditions].
    Zhang HM; Yao SJ; Peng LF; Shimizu K
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):398-402. PubMed ID: 15971613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic flux balance analysis of batch fermentation: effect of genetic manipulations on ethanol production.
    Lisha KP; Sarkar D
    Bioprocess Biosyst Eng; 2014 Apr; 37(4):617-27. PubMed ID: 23921448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L
    Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-stage continuous culture fermentation of glucose-xylose mixtures to fuel ethanol using genetically engineered Saccharomyces cerevisiae 424A.
    Govindaswamy S; Vane LM
    Bioresour Technol; 2010 Feb; 101(4):1277-84. PubMed ID: 19811910
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.