BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 17243589)

  • 41. Automated techniques for visualization and mapping of articular cartilage in MR images of the osteoarthritic knee: a base technique for the assessment of microdamage and submicro damage.
    Cashman PM; Kitney RI; Gariba MA; Carter ME
    IEEE Trans Nanobioscience; 2002 Mar; 1(1):42-51. PubMed ID: 16689221
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A technique for visualization and mapping of local cartilage thickness changes in MR images of osteoarthritic knee.
    Ge Q; Cheng Y; Bi K; Guo C; Bai J; Tamura S
    Eur J Radiol; 2012 Nov; 81(11):3404-11. PubMed ID: 22571929
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Automatic segmentation of articular cartilage in magnetic resonance images of the knee.
    Fripp J; Crozier S; Warfield SK; Ourselin S
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):186-94. PubMed ID: 18044568
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automatic recovery of the optic nervehead geometry in optical coherence tomography.
    Boyer KL; Herzog A; Roberts C
    IEEE Trans Med Imaging; 2006 May; 25(5):553-70. PubMed ID: 16689260
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A framework for optimizing measurement weight maps to minimize the required sample size.
    Qazi AA; Jørgensen DR; Lillholm M; Loog M; Nielsen M; Dam EB
    Med Image Anal; 2010 Jun; 14(3):255-64. PubMed ID: 20189869
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interactive knee cartilage extraction using efficient segmentation software: data from the osteoarthritis initiative.
    Gan HS; Tan TS; Wong LX; Tham WK; Sayuti KA; Abdul Karim AH; bin Abdul Kadir MR
    Biomed Mater Eng; 2014; 24(6):3145-57. PubMed ID: 25227024
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST.
    Mulder ER; de Jong RA; Knol DL; van Schijndel RA; Cover KS; Visser PJ; Barkhof F; Vrenken H;
    Neuroimage; 2014 May; 92():169-81. PubMed ID: 24521851
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Automated analysis of hip joint cartilage combining MR T2 and three-dimensional fast-spin-echo images.
    Chandra SS; Surowiec R; Ho C; Xia Y; Engstrom C; Crozier S; Fripp J
    Magn Reson Med; 2016 Jan; 75(1):403-13. PubMed ID: 25644241
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of carotid artery wall volume measurement using novel semiautomated analysis software.
    Varghese A; Merrifield RD; Crowe LA; Collins SA; Keenan NG; Firmin DN; Yang GZ; Pennell DJ
    J Magn Reson Imaging; 2006 Dec; 24(6):1401-8. PubMed ID: 17096390
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Studies on quantitative analysis and automatic recognition of cell types of lung cancer.
    Chen YC; Hu KH; Li FZ; Li SY; Su WF; Huang ZY; Hu YX
    Biomed Mater Eng; 2006; 16(2):119-28. PubMed ID: 16477120
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies.
    Zhang K; Lu W; Marziliano P
    Magn Reson Imaging; 2013 Dec; 31(10):1731-43. PubMed ID: 23867282
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Use of 3T MRI and an unspoiled 3D fast gradient echo sequence for porcine knee cartilage volumetry: preliminary findings.
    Cromer MS; Foster SL; Bourne RM; Fransen M; Fulton R; Wang SC
    J Magn Reson Imaging; 2013 Jul; 38(1):245-50. PubMed ID: 23124834
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Knee cartilage: efficient and reproducible segmentation on high-spatial-resolution MR images with the semiautomated graph-cut algorithm method.
    Shim H; Chang S; Tao C; Wang JH; Kwoh CK; Bae KT
    Radiology; 2009 May; 251(2):548-56. PubMed ID: 19401579
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Potential and feasibility of parallel MRI at high field.
    Wiesinger F; Van de Moortele PF; Adriany G; De Zanche N; Ugurbil K; Pruessmann KP
    NMR Biomed; 2006 May; 19(3):368-78. PubMed ID: 16705638
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Diagnostic fidelity of the Z-buffer segmentation algorithm: preliminary assessment based on intracranial aneurysm detection.
    Chapman BE; Parker DL; Stapelton JO; Tsuruda JS; Mello-Thoms C; Hamilton B; Katzman GL; Moore K
    J Biomed Inform; 2004 Feb; 37(1):19-29. PubMed ID: 15016383
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Morphologic imaging of articular cartilage.
    Strickland CD; Kijowski R
    Magn Reson Imaging Clin N Am; 2011 May; 19(2):229-48. PubMed ID: 21665089
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Counting moles automatically from back images.
    Lee TK; Atkins MS; King MA; Lau S; McLean DI
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1966-9. PubMed ID: 16285401
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Diagnosis of osteoarthritis and prognosis of tibial cartilage loss by quantification of tibia trabecular bone from MRI.
    Marques J; Genant HK; Lillholm M; Dam EB
    Magn Reson Med; 2013 Aug; 70(2):568-75. PubMed ID: 22941674
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Automatic "pipeline" analysis of 3-D MRI data for clinical trials: application to multiple sclerosis.
    Zijdenbos AP; Forghani R; Evans AC
    IEEE Trans Med Imaging; 2002 Oct; 21(10):1280-91. PubMed ID: 12585710
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automatic segmentation of different-sized white matter lesions by voxel probability estimation.
    Anbeek P; Vincken KL; van Osch MJ; Bisschops RH; van der Grond J
    Med Image Anal; 2004 Sep; 8(3):205-15. PubMed ID: 15450216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.