BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 17243667)

  • 1. Catabolite activator protein in aqueous solution: a molecular simulation study.
    Berrera M; Pantano S; Carloni P
    J Phys Chem B; 2007 Feb; 111(6):1496-501. PubMed ID: 17243667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational investigation of allostery in the catabolite activator protein.
    Li L; Uversky VN; Dunker AK; Meroueh SO
    J Am Chem Soc; 2007 Dec; 129(50):15668-76. PubMed ID: 18041838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular modeling studies on CNG channel from bovine retinal rod: a structural model of the cyclic nucleotide-binding domain.
    Punta M; Cavalli A; Torre V; Carloni P
    Proteins; 2003 Aug; 52(3):332-8. PubMed ID: 12866047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the DNA bend angle induced by the catabolite activator protein using Monte Carlo simulation of cyclization kinetics.
    Kahn JD; Crothers DM
    J Mol Biol; 1998 Feb; 276(1):287-309. PubMed ID: 9514724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 A resolution.
    Passner JM; Schultz SC; Steitz TA
    J Mol Biol; 2000 Dec; 304(5):847-59. PubMed ID: 11124031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of transcription activation: the CAP-alpha CTD-DNA complex.
    Benoff B; Yang H; Lawson CL; Parkinson G; Liu J; Blatter E; Ebright YW; Berman HM; Ebright RH
    Science; 2002 Aug; 297(5586):1562-6. PubMed ID: 12202833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mean DNA bend angle and distribution of DNA bend angles in the CAP-DNA complex in solution.
    Kapanidis AN; Ebright YW; Ludescher RD; Chan S; Ebright RH
    J Mol Biol; 2001 Sep; 312(3):453-68. PubMed ID: 11563909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 1.6Å resolution structure of activated D138L mutant of catabolite gene activator protein with two cAMP bound in each monomer.
    Tao W; Gao Z; Gao Z; Zhou J; Huang Z; Dong Y; Yu S
    Int J Biol Macromol; 2011 Apr; 48(3):459-65. PubMed ID: 21255606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-mediated interactions between DNA and PhoB DNA-binding/transactivation domain: NMR-restrained molecular dynamics in explicit water environment.
    Yamane T; Okamura H; Ikeguchi M; Nishimura Y; Kidera A
    Proteins; 2008 Jun; 71(4):1970-83. PubMed ID: 18186481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Change in binding states between catabolite activating protein and DNA induced by ligand-binding: molecular dynamics and ab initio fragment molecular orbital calculations.
    Anan R; Nakamura T; Shimamura K; Matsushita Y; Ohyama T; Kurita N
    J Mol Model; 2019 Jun; 25(7):192. PubMed ID: 31203432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From the X-ray compact structure to the elongated form of the full-length MMP-2 enzyme in solution: a molecular dynamics study.
    Díaz N; Suárez D; Valdés H
    J Am Chem Soc; 2008 Oct; 130(43):14070-1. PubMed ID: 18834122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of cardiolipin bilayers.
    Dahlberg M; Maliniak A
    J Phys Chem B; 2008 Sep; 112(37):11655-63. PubMed ID: 18712912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of aqueous sodium hydroxide solutions: a combined solution x-ray diffraction and simulation study.
    Megyes T; Bálint S; Grósz T; Radnai T; Bakó I; Sipos P
    J Chem Phys; 2008 Jan; 128(4):044501. PubMed ID: 18247963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of domain motions of substrate-free S-adenosyl- L-homocysteine hydrolase in solution.
    Hu C; Fang J; Borchardt RT; Schowen RL; Kuczera K
    Proteins; 2008 Apr; 71(1):131-43. PubMed ID: 17932938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulations of CRP:(cAMP)2 in noncrystalline environments show a subunit transition from the open to the closed conformation.
    García AE; Harman JG
    Protein Sci; 1996 Jan; 5(1):62-71. PubMed ID: 8771197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of dimeric nonstandard nucleotide triphosphate pyrophosphatase from Pyrococcus horikoshii OT3: functional significance of interprotomer conformational changes.
    Lokanath NK; Pampa KJ; Takio K; Kunishima N
    J Mol Biol; 2008 Jan; 375(4):1013-25. PubMed ID: 18062990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallographic studies of protein-nucleic acid interaction: catabolite gene activator protein and the large fragment of DNA polymerase I.
    Steitz TA; Weber IT; Ollis D; Brick P
    J Biomol Struct Dyn; 1983 Dec; 1(4):1023-37. PubMed ID: 6101086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of solvation sites at the interface of Src SH2 domain complexes using molecular dynamics simulations.
    Geroult S; Hooda M; Virdee S; Waksman G
    Chem Biol Drug Des; 2007 Aug; 70(2):87-99. PubMed ID: 17683370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping ligand interactions with the hyperpolarization activated cyclic nucleotide modulated (HCN) ion channel binding domain using a soluble construct.
    Scott SP; Shea PW; Dryer SE
    Biochemistry; 2007 Aug; 46(33):9417-31. PubMed ID: 17655202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics and atomic charge calculations in the study of heparin conformation in aqueous solution.
    Becker CF; Guimarães JA; Verli H
    Carbohydr Res; 2005 Jun; 340(8):1499-507. PubMed ID: 15882850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.